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Abstract 
System Level Analysis calls for a language comprehensible to experts with different 
background and yet precise enough to support meaningful analyses. SysML is emerging 
as an effective balance between such conflicting goals. In this paper we outline some the 
results obtained as for SysML based system level functional formal verification by an 
ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of 
Roma. The study focuses on SysML based system level functional requirements 
techniques. 

1. Introduction 

System Level Functional Analysis encompasses many activities among which (system 
level) V&V, namely:  Validation (answering the question: are we building the right system?) 
and Verification (answering the question: are we building the system right?).  Functional 
Analysis techniques (e.g. testing and simulation) are geared towards showing presence of 
errors; accordingly they can only provide evidence for a negative answer to V&V 
questions. On the other hand, Formal Functional Analysis techniques (e.g. model 
checking) are geared towards showing absence of errors; accordingly they can provide 
evidence for a positive answer to V&V questions.  
 
The classes of system models handled by the above mentioned analysis techniques are 
also different. In fact, testing and simulation can handle quite detailed models as long as 
all inputs and parameters are defined. On the other hand, formal techniques can handle 
models with undefined parameters and inputs (e.g., modelling faults or disturbances) as 
long as such models have a moderate size. Thus, formal techniques can be used for a 
worst case analysis returning as output the worst case scenario (i.e. inputs and 
parameters) for the system under analysis. 
 
The above state of affairs suggests using formal techniques as early as possible in the 
system design activities, namely: as soon as some system model (even qualitative) is 
available. In fact, this allows early detection of errors in system or subsystem 
specifications. For example, as for space software development, the above considerations 
suggests using formal techniques towards the end of phase A or at the beginning of phase 
B. 
 
However, harvesting the promise of formal techniques requires a system engineering 
formalism that can describe in a precise, yet comprehensible, way all subsystems 
(components) forming the system being designed. In particular, to design and analyze 
software subsystems we need formalisms that can somehow describe hybrid systems 
[HybridSys], that is systems consisting of software as well as hardware (physical) 
components modelling the environment the software components interact with. SysML 



[SysML] answers this need by providing a graphical language to define system 
requirements, system structure and behaviour of components (both physical as well as 
software). This suggests investigating the possibility of carrying out system level functional 
requirements formal verification starting from SysML models and translating them to the 
input language of a suitable model checker for hybrid systems (e.g. HyTech [HybridSys] or 
CMurphi [CMurphi, CMurphi-HS]).  
 

1.1. Our Contribution 

In this paper, with the help of a small yet meaningful example, we outline how SysML can 
be used to define models that can be translated into the input language of a model 
checker (HyTech in out study) and how SysML and model checking can be used to 
support proof continuity. Our contributions can be summarized as follows. 
 
In Section 2 we describe SysML usage in Space System Engineering. In Section 3, in 
order to make our paper self-contained, we give some background on model. In Section 4 
we describe our running example: the oven temperature control system (TCS). In Section 
5 we outline how TCS can be modelled using SysML. In Section 6, using TCS, we 
describe how a SysML model can be translated into a HyTech model. In Section 7 we 
show our experimental results on using HyTech to verify TCS requirements. Finally, in 
Section 8 we discuss how system level formal validation results can be linked to 
subsystem formal verification results (proof continuity). 
 

1.2. Related Works 

We note that model checking of SysML models has been also studied in different contexts. 
Here are some examples. Model checking of SysML models by mapping them to Petri 
Nets has been studied in [SYsML-PetriNets-ETFA-2007]. Note that no hybrid dynamics is 
considered in this work. Model checking of probabilistic SysML models, by mapping them 
to Markov Chains, has been studied [MC-SysML-ECSB07]. Note that this work only 
considers finite state Markov Chains, thus hybrid dynamics cannot be handled using this 
approach. Mapping from SysML to System C for designing purposes has been studied in 
[SysML2SystemC]. 
 

2. Using SysML for Space System Engineering 

SysML is a UML Profile for System Engineering intended to support modelling of a broad 
range of systems, which may include hardware, software, data, personnel, procedures, 
and facilities.  
 
Developed by a large number of industry, government, academia and tool vendors, SysML 
support the analysis, specification, design, and verification of complex systems by taking 
advantage of significant system engineering and UML support and experience and it 
results in a wide accepted language that well fits to support the principles of the reference 
system processes defined by the ISO 15288 [ISO15288].  
 
Modelling with SysML may support the system engineering processes according to the 
ECSS-ST-E10C [ECSS- ST-E10C], starting from mission requirements (mainly the 
mission oriented requirement document - MRD) to the definition of the whole real and 
operational system. Mission requirements of Phase 0/A are refined into system 



requirements in Phase A, and then refined by several iterations into technical 
requirements, including software mainly in Phase B and Phase C. 
The use of SysML as a modelling language allows to gather all the information on 
requirements, which may be distributed also in other different formalisms and models, that 
today may be used in the European Space sector, and to offer at the highest level a 
synthesis of the requirement facilitating their evaluation of compliance.  
 
The SysML diagram in Figure 2.1 shows an abstraction of the kind of SysML models and 
the relationships among them, that should be defined in order to support the E10 
processes, In the figure the high level system engineering model is partitioned into a 
collection of related sub-models each representing the outputs of one of the main areas of 
the space system engineering processes. 
 

 

Figure 2.1. The SysML model entities partitioned into the SE process areas 

 
A SySML model-based methodology to support system-software requirement capturing is 
currently investigated and experimented in the context of the ESA/ESTEC System and 
Software Functional Requirements Techniques (SSFRT) project, with consortium led by 
Intecs.  
 

3. Background on Model Checking 

A model checker [Model-Checking-McM, Model-Checking-Sur] takes as input a system 
description (using a suitable programming language) and a system property (typically 
defined by means of the same language used to define the system or by means of a 
suitable temporal logic such as CTL [Model-Checking-Sur]) and returns PASS if the 
system satisfies the given property, FAIL otherwise. In the latter case a model checker 



also shows a system run (counterexample) falsifying the given property. Figure 3.1 
summarizes the above scenario. 
 

Figure 3.1. Model Checking 
 
The main difference between model checking and testing is that while testing can only 
show presence of errors (by exhibiting an error trace) a model checker can also show 
absence of errors (when it returns PASS). On the other hand, testing is computationally 
much lighter than model checking. Indeed, the main obstruction to model checking is the 
state explosion problem, that is the fact that the number of states of a system may be 
exponential in the size of the description of the system itself. For example a procedure with 
just one 32-bit integer variable may generate 232 possible states. Analogously an array of 
size n of integer variables yields 232n states. The success of model checking rests on the 
fact that efficient techniques have been devised to counteract the state explosion problem 
(which cannot be eliminated being the reachability problem PSPACE complete). 
 
Many model checking algorithms and tools are available. Depending on the application 
domain one approach will work better than another. For this reason many model checkers 
are available each targeting a particular class of systems. System level analysis requires 
considering models describing software behaviour (discrete state changes) as well as 
models describing the behaviour of physical devices (continuous state changes). This calls 
for model checkers for hybrid systems such as HyTech [HybridSys], UPPAAL [UPPAAL], 
CMurphi [CMurphi, CMurphi-HS], HYSDEL [HYSDEL], HSMV [HSMV]. Since the systems 
we consider here can be modelled using Linear Hybrid Automata [HybridSys] we will use 
HyTech in this study. 
 

COUNTEREXAMPLE 
That is, a sequence of events (states) 
violating the given specifications. 
 

System Model.  
For example: SysML, VHDL, Verilog, C, 
C++, Java, SDL,  ESTEREL, Simulink,  
UML, Petri Nets. 
  

System Properties.  
For example: UML, SysML, C,  CTL, 
PSL. 
 

Model Checker 
(Equivalent to Exhaustive Testing!!) 

PASS 
That is, we are sure that there exists 
no sequence of events (states) 
violating the specifications.  
  



4. Description of our Running Example: A Temperature Control System (TCS) 

To clarify the forthcoming discussion we will use as a running example the (system level) 
modelling of a simple oven temperature regulator. This is indeed a typical on-board 
equipment. 
 
We are given a heater that can be ON or OFF. The heater is used to keep an oven (for 
example for on-board instrumentations) always in a certain interval of temperature. For our 
purposes we can assume that the oven temperature τ follows (approximately) the following 
equations: 

a1 ≤ dτ/dt ≤ a2 (Heater ON)  and (τ < τ MAX) (Eq. 1) 
dτ/dt = 0 (τ ≥ τ MAX) or (τ ≤  τ MIN) (Eq. 2) 

b1 ≤ dτ/dt ≤ b2 (Heater OFF) and (τ > τ MIN) (Eq. 3) 
where: 

• Variable τ(t) is the oven temperature at time t, 

• Constants a1 and a2 give, respectively, the lower and upper bounds for the oven 
heating speed. 

• Constants b1 and b2 give, respectively, the lower and upper bounds for the oven 
cooling speed. 

• TMIN is the min temperature the oven will reach if the heater is kept OFF. 

• TMAX is the max temperature the oven will reach if the heater is kept ON. 
 
Intuitively, the speed of variation of the oven temperature (dτ/dt) is bounded as shown in 
Equations 1, 2, 3.  The oven temperature increases with a speed in [a1, a2] ([b1, b2]) when 
the heater is on (off). Since b1 and b2 are negative we have that when the heater is off the 
temperature actually decreases. Furthermore, from Eq. 2 we see that the temperature 
cannot rise above TMAX when the heater is on and cannot drop below TMIN when the heater 
is off. 
The goal of the temperature regulator is to keep the oven temperature always in the 
interval [T1, T2] with T1 = 13°C and T2 = 17°C.  To this end the temperature regulator will 
measure the oven temperature and will turn the heater ON whenever the temperature falls 
below Tlow = 14°C and will turn the heater OFF whenever the temperature rises above Thigh 
= 16°C. 
The following table summarizes the value for the system parameters as well as their 
meaning.  
 

Parameter 
Name 

Value Short Description 

a1 0.1 °C/s Min heating speed 
a2 0.2 °C/s Max heating speed 
b1 -0.02 °C/s Value |b1| gives the max cooling speed 
b2 -0.01 °C/s Value |b1| gives the min cooling speed 
TMIN -50 °C Min temperature achievable 
TMAX 30 °C Max temperature achievable 
T1 13 °C Min safe temperature 
T2 17 °C Max safe temperature 
Tlow 14 °C Turn on temperature for the heater 
Thigh 16 °C Turn off temperature for the heater 
SNSR_TOL To be defined  Max error in sensor reading 
DLY To be defined Max delay in heater controller 

Table 4.1. System Parameters 



 
The values for the parameters SNSR_TOL and DLY will be an output of the system level 
analysis activity. In fact, in order to save on hardware, we would like to make SNSR_TOL 
and DLY as large as possible. However, if  SNSR_TOL or DLY are too large the controller 
may not be able to keep  the oven temperature within the desired range. We would like to 
get admissible values for SNSR_TOL and DLY from the formal system level analysis 
activity.  
 

5.  SysML Model for the Temperature Control System 

Our Temperature Control System (TCS) consists of a sensor measuring the oven 
temperature, an oven heater and a controller that turns the oven heater ON or OFF. The 
controller itself is a program running on a CPU on which other processes are also running. 
In the following we outline a SysML model for TCS and its requirements. 
 
The SysML bdd in Figure 5.1 defines the system requirements (with the block 
<<requirement>>). The requirement block states that the oven temperature temp 

should be between 13° C and 17° C (T1 and T2 from Table 4.1). Figure 5.2 shows TCS 
structure. From such figure we see that TCS consists of 3 subsystems: a sensor, a 
controller and an oven. 
 
Block Sensor variables are: sensorMode (ranging on STM  Sensor states, i.e. 

SensorModeType) and temp (ranging on oven temperature). Block Sensor signals are 

LowTemp and HighTemp. Block Ctr variables are: ctrMode (ranging on STM Ctr states, 

i.e. CtrModeType) and timer measuring sojourn times in STM Ctr states.  Block Ctr 

signals are  HeaterOn and HeaterOff. Block Oven variables are: ovenMode (ranging 

on STM Oven states, i.e. OvenModeType) and temp (ranging on oven temperature). 

 
Figure 5.2 shows the internal block structure for TCS. It is a classical feedback control 
system where the controller (Ctr) turns the oven heater (Oven) on or off depending on the 

oven temperature readings (Sensor). Note that for easy of presentation, our sensor reads 

the oven temperature and also sends signals triggering the controller. 
 



 
Figure 5.1. SysML TCS Requirements 

 

 

Figure 5.2. SysML TCS Subsystems 

 
In the following we outline our SysML model for Oven. SysML models for Sensor and Ctr 

are obtained along the same line of reasoning.  
 
Figure 5.3 shows block Oven constraints, Figure 5.4 shows the Oven state machine. 

 



 

Figure 5.3. SysML Oven Constraints 

 

 

Figure 5.4. SysML Oven STM 



State machine Oven in Figure 5.4 defines the possible oven modes: the heater is on 

(Heater_On), the heater is off (Heater_Off), the maximum temperature has been 

reached (Heater_On_SAT), the minimum temperature has been reached 

(Heater_Off_SAT).  

 
Constraint Heater_On in Figure 5.3 defines the invariant for state Heater_On (i.e. temp 

<= TMAX) as well as the oven temperature temp dynamics (i.e. a1 <= D(temp) <= a2) 
accordingly to Eq. 1 in Section 4. 
 
Constraint Heater_Off in Figure 5.3 defines the invariant for state Heater_Off (i.e. 

temp >= TMIN) as well as the oven temperature temp dynamics (i.e. b1 <= D(temp) 

<= b2) accordingly to Eq. 3 in Section 4. 

 
Constraint Heater_On_SAT in Figure 5.3 defines the invariant for state Heater_On_SAT 

(i.e. temp >= TMAX) as well as the oven temperature temp dynamics (i.e. D(temp) = 

0) accordingly to Eq. 2 in Section 4. 

 
Constraint Heater_Off_SAT in Figure 5.3 defines the invariant for state 

Heater_Off_SAT (i.e. temp <= TMIN) as well as the oven temperature temp dynamics 

(i.e. D(temp) = 0) accordingly to Eq. 2 in Section 4. 

 
When Oven in Figure 5.4 receives a signal HeaterOn (HeaterOff) from the controller 

(Ctr) it turns the heater on (off) thus moving to state Heater_On or Heater_On_SAT  

(Heater_Off or Heater_Off_SAT). 

Note how using SysML constraint blocks and state machines we can easily model systems 
with different operational modes. 
 

6. Mapping SysML Models to HyTech 

As discussed in Section 3, all model checkers have essentially two inputs: a formal model 
and a formal specification. The (formal) model defines the behaviour of the system at hand 
whereas the (formal) specification defines a property that the model is supposed to satisfy. 
The model checker will then check if indeed the model does satisfy the given specification 
and, if not, it will return a counterexample, that is, a model execution trace falsifying the 
given specification. 
 
From the above it is clear that in order to map SysML models into the input language for a 
model checker we need to build a formal model and a formal specification starting from the 
given SysML model. The natural approach is to map SysML blocks defining requirements 
to formal specifications and SysML blocks defining behaviours to formal models. Of 
course, the way this is actually done, depends on how the target model checker defines 
models and specifications.  
 
For example, if we use a model checker like SMV [SMV] or SPIN [SPIN] then we have a 
language to define (temporal logic) formal specifications and another different language to 
define the system formal model. On the other hand, many model checkers for hybrid 
systems (including HyTech) use the same language to define both the formal model and 
the formal specifications. This is due to the fact that such model checkers only handle 
safety properties that, in turn, can be easily defined as set of (safe) system states. Set of 
states can be easily defined with a monitor returning true if a state is in the set and false 



otherwise. Such monitor can be easily defined using the model checker modelling 
language which is then also used to define safety specifications. In such cases the model 
checking problem comes down to check that no unsafe state can be reached from an 
initial state during the system evolution. Accordingly, when using such kind of model 
checkers, both SysML requirement blocks and behavioural blocks are mapped into the 
model checker system model with requirement blocks being used to define the set of safe 
(or unsafe) states. 
 
Model checkers expect a formal definition of the system behaviour. Thus, to enable 
translation from SysML to HyTech a formal semantics for SysML diagrams describing 
behaviours has to be given. This can be done by suitably refining SysML semantics.  In 
the following we show how we can build a HyTech model for the 
TemperatureControlSystem SysML model in Section 5. In Section 7 we will present 

some system level formal validation result using our HyTech model. 
 

6.1. HyTech Model for TCS 

Formal validation of SysML models enables system level requirement formal validation. 
This, in turn, allows detection of errors since from the first system engineering activities 
(such as definition of system requirements). In order to support automatic formal validation 
of SysML models in this section we show how mapping from SysML models to HyTech 
can be done. Of course, the actual translation strategy depends on how SysML models 
are defined (for example the language used to define the continuous dynamics) as well as 
on the target model checker. To give concreteness to our presentation we will present the 
general principles underlying the mapping strategy together with a running example 
showing how the general mapping strategy is to be applied on a small yet meaningful 
example. HyTech models systems as a set of Linear Hybrid Automata (LHA). An LHA 
consists of a finite set of locations and a finite set of real valued variables. A state s of an 
LHA is a pair (loc, val) where loc is a location and val is an assignment of values to the 
LHA real variables. 
 
Time is continuous and only elapses when the LHA does not change location. On the 
other hand, transitions form a location to a different one are assumed instantaneous. An 
LHA can only stay in a location when the invariant for that location is true. An LHA moves 
from a location to another by making transitions. LHA transitions are guarded, thus a 
transition can be taken only if its guard is true. LHA variables may be assigned a value 
(reset condition) when taking a transition. 
 
LHA define the dynamics for the continuous variables by defining linear bounds for their 
first time derivatives (rate condition). Each LHA location has its rate condition (as well as 
its invariant). 
 
Transitions may have synchronization labels. A transition with synchronization label a can 
only be taken together with another transition (in a different LHA) labelled with also with a.  
 
As for most model checker, HyTech input is textual. However LHA have a helpful graphical 
representation that we will use to illustrate our mapping from SysML to HyTech. When 
using a graphical representation an LHA is seen as a labelled directed graph which 
vertices represent LHA locations and edges LHA transitions. Accordingly, each vertex is 
labelled with the location name, its invariant and its rate condition whereas each transition 
is labelled with its guard, reset condition and synchronization label, if any. 



 

6.2. Oven Model 

Figure 6.1 shows our LHA for the oven model from Section 5. We see that locations, 
transition and transition guards in Figure 6.1 are those in the STM in Figure 5.4 of Section 
5. State invariants and rate conditions in Figure 6.1 are obtained from the constraints in 
Figure 5.3 in Section 5. In Figure 6.1 we have denoted the fist time derivative of variable x 
with D(x). 

 

heater_is_on 
Temp <= Tmax 

 
a1 <=  D(Temp)  

<= a2  

heater_is_off 
Temp >= Tmin 

 
b1 <= D(Temp) <= b2 

heater_is_on_sat 
 

Temp >= Tmax 
 

D(Temp) = 0  

heater_is_off_sat 
 

Temp <= Tmin 
 

D(Temp) = 0  

heater_off 

heater_on 

Temp >= Tmax 

heater_off 

heater_on 

heater_off 

heater_on 

Temp <= Tmin heater_on 

heater_off 

Temp = 15 

 

Figure 6.1. Oven LHA 

7. System Level Validation Results 

HyTech, as most model checkers for hybrid systems, only handles safety properties. This 
is done by defining a set of unsafe states and then carrying out a reachability analysis to 
check that no unsafe state is reachable from an initial state. For HyTech this is done by 
defining the set of error states, that is the set of states that violates the safety 
requirements, and then asking HyTech to check if there exists an error state reachable 
from an initial state.  
 
As for TCS, from the <<requirement>> block in Figure 5.1 in Section 5 we see that  the 

set of error state is defined as the set of states satisfying the constraint: “(Temp <= 13) 

or (Temp >= 17)”. Running HyTech returns the conditions under which the safety 

property defined in the <<requirement>> block in Figure 5.1 in Section 5 is violated. 

The results are in Figure 7.1. 
 

Conditions under which TCS violates 
safety requirements (HyTech output). 

(SNSR_TOL > 1)   
OR   

(5*SNSR_TOL + DLY > 5) 



Conditions under which TCS meets 
safety requirements. 

(SNSR_TOL <= 1) 
AND 

(5*SNSR_TOL + DLY <= 5) 

Figure 7.1. Validation Results 

Figure 7.2 gives examples of safe and unsafe settings for our system (SNSR_TOL) and 
software (DLY) parameters.  
 

Setting ID SNSR_TOL DLY System Level Formal Validation Result 
1 1.5 2 FAIL 
2 0.5 2 PASS 
3 0.5 2.4 PASS 
4 0.5 3 FAIL 

Figure 7.2. Safe and Unsafe Settings 

8. Linking SysML Formal Validation to Subsystem Formal Verification  

Typically subsystems are not defined using SysML but rather using specialized languages. 
For example: a subsystem implemented with digital hardware may be defined using 
Verilog, VHDL, SystemC, Esterel; a subsystem implementing a control system may be 
defined using Simulink; a subsystem implemented using software may be defined using 
SDL, C or Java; a subsystem detailed specification may be defined using Petri Nets. 
However, in order to guarantee proof continuity a formal link must be established between 
such subsystem definitions and the SysML system level model. Failing of establishing 
such link will make our system model a throw-away model without any formal link to the 
following design steps. As a result, we may formally validate a system level design that 
however may have nothing to do with the actual system built.  
 
We can support proof continuity in our framework by using an assume-guarantee 
verification approach to establish a formal link between system level validation and 
subsystem verification. To this end we proceed as follows. 
 
First, resting on the assumption that subsystems (software or hardware) meet their 
requirements, we verify that the overall system meets its system level requirements. This 
verification activity indeed validates the subsystems requirements since it shows that 
subsystem requirements are correct (i.e. we are building the right subsystems). For 
example, the results in Section 7 verify (guarantee) the TCS satisfies its requirements (in 
Section 5) assuming that the implementations of TCS subsystems (i.e. sensor, controller, 
oven) behave accordingly to their specifications. Note that the requirements being 
validated here are those of the subsystems. 
 
Second, we guarantee that indeed the subsystems (software or hardware) meet their 
requirements. This is done by showing, for example by using model checking techniques, 
that the implementation of each subsystem satisfies the specifications defined using its 
SysML model. Of course, depending on how the subsystem is implemented, a suitable 
model checker will be used. For example, a hardware subsystem can be formally verified 
using a hardware model checker (e.g. [Cadence]) whereas a control system defined using 
Simulink could be formally verified using Lustre [Simulink2Lustre].  

 
Note that, as for model checking purposes, in the system level validation activity we map 
SysML requirements into formal specifications and SysML behavioural models into formal 



models. On the other hand, when using model checking tools to link subsystems formal 
verification to system level validation, we map SysML model for subsystems into formal 
specifications and implementations for subsystems to formal models. Figure 8.1 
summarizes the outlined approach. 
 

Figure 8.1. Assume-Guarantee Verification Approach 
 

9. Conclusions  

Our investigation shows that, with some semantic refinements, SysML can effectively be 
used to define system requirements and behavioural models suitable for formal verification 
via model checking. We note that system level formal verification is indeed a validation for 
the subsystem models since it shows that if the subsystems behave accordingly to their 
models then the system requirements will be satisfied. Accordingly, subsystem models can 
then be used as specifications for the implementation of subsystems. This, in turn, defines 
a formal link between system level requirements analysis and design of subsystems (proof 
continuity). 
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