
Formal Verification at System Level

Silvia Mazzini, Stefano Puri
INTECS

Via E. Giannessi 5
Loc. Ospedaletto
I-56121 Pisa, Italy

{Stefano.Puri,Silvia.Mazzini}@intecs.it

Federico Mari, Igor Melatti, Enrico Tronci
Computer Science Department
La Sapienza University of Roma

Via Salaria 113
I-00198 Roma, Italy

{mari,melatti,tronci}@di.uniroma1.it

Abstract
System Level Analysis calls for a language comprehensible to experts with different
background and yet precise enough to support meaningful analyses. SysML is emerging
as an effective balance between such conflicting goals. In this paper we outline some the
results obtained as for SysML based system level functional formal verification by an
ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of
Roma. The study focuses on SysML based system level functional requirements
techniques.

1. Introduction

System Level Functional Analysis encompasses many activities among which (system
level) V&V, namely: Validation (answering the question: are we building the right system?)
and Verification (answering the question: are we building the system right?). Functional
Analysis techniques (e.g. testing and simulation) are geared towards showing presence of
errors; accordingly they can only provide evidence for a negative answer to V&V
questions. On the other hand, Formal Functional Analysis techniques (e.g. model
checking) are geared towards showing absence of errors; accordingly they can provide
evidence for a positive answer to V&V questions.

The classes of system models handled by the above mentioned analysis techniques are
also different. In fact, testing and simulation can handle quite detailed models as long as
all inputs and parameters are defined. On the other hand, formal techniques can handle
models with undefined parameters and inputs (e.g., modelling faults or disturbances) as
long as such models have a moderate size. Thus, formal techniques can be used for a
worst case analysis returning as output the worst case scenario (i.e. inputs and
parameters) for the system under analysis.

The above state of affairs suggests using formal techniques as early as possible in the
system design activities, namely: as soon as some system model (even qualitative) is
available. In fact, this allows early detection of errors in system or subsystem
specifications. For example, as for space software development, the above considerations
suggests using formal techniques towards the end of phase A or at the beginning of phase
B.

However, harvesting the promise of formal techniques requires a system engineering
formalism that can describe in a precise, yet comprehensible, way all subsystems
(components) forming the system being designed. In particular, to design and analyze
software subsystems we need formalisms that can somehow describe hybrid systems
[HybridSys], that is systems consisting of software as well as hardware (physical)
components modelling the environment the software components interact with. SysML

[SysML] answers this need by providing a graphical language to define system
requirements, system structure and behaviour of components (both physical as well as
software). This suggests investigating the possibility of carrying out system level functional
requirements formal verification starting from SysML models and translating them to the
input language of a suitable model checker for hybrid systems (e.g. HyTech [HybridSys] or
CMurphi [CMurphi, CMurphi-HS]).

1.1. Our Contribution

In this paper, with the help of a small yet meaningful example, we outline how SysML can
be used to define models that can be translated into the input language of a model
checker (HyTech in out study) and how SysML and model checking can be used to
support proof continuity. Our contributions can be summarized as follows.

In Section 2 we describe SysML usage in Space System Engineering. In Section 3, in
order to make our paper self-contained, we give some background on model. In Section 4
we describe our running example: the oven temperature control system (TCS). In Section
5 we outline how TCS can be modelled using SysML. In Section 6, using TCS, we
describe how a SysML model can be translated into a HyTech model. In Section 7 we
show our experimental results on using HyTech to verify TCS requirements. Finally, in
Section 8 we discuss how system level formal validation results can be linked to
subsystem formal verification results (proof continuity).

1.2. Related Works

We note that model checking of SysML models has been also studied in different contexts.
Here are some examples. Model checking of SysML models by mapping them to Petri
Nets has been studied in [SYsML-PetriNets-ETFA-2007]. Note that no hybrid dynamics is
considered in this work. Model checking of probabilistic SysML models, by mapping them
to Markov Chains, has been studied [MC-SysML-ECSB07]. Note that this work only
considers finite state Markov Chains, thus hybrid dynamics cannot be handled using this
approach. Mapping from SysML to System C for designing purposes has been studied in
[SysML2SystemC].

2. Using SysML for Space System Engineering

SysML is a UML Profile for System Engineering intended to support modelling of a broad
range of systems, which may include hardware, software, data, personnel, procedures,
and facilities.

Developed by a large number of industry, government, academia and tool vendors, SysML
support the analysis, specification, design, and verification of complex systems by taking
advantage of significant system engineering and UML support and experience and it
results in a wide accepted language that well fits to support the principles of the reference
system processes defined by the ISO 15288 [ISO15288].

Modelling with SysML may support the system engineering processes according to the
ECSS-ST-E10C [ECSS- ST-E10C], starting from mission requirements (mainly the
mission oriented requirement document - MRD) to the definition of the whole real and
operational system. Mission requirements of Phase 0/A are refined into system

requirements in Phase A, and then refined by several iterations into technical
requirements, including software mainly in Phase B and Phase C.
The use of SysML as a modelling language allows to gather all the information on
requirements, which may be distributed also in other different formalisms and models, that
today may be used in the European Space sector, and to offer at the highest level a
synthesis of the requirement facilitating their evaluation of compliance.

The SysML diagram in Figure 2.1 shows an abstraction of the kind of SysML models and
the relationships among them, that should be defined in order to support the E10
processes, In the figure the high level system engineering model is partitioned into a
collection of related sub-models each representing the outputs of one of the main areas of
the space system engineering processes.

Figure 2.1. The SysML model entities partitioned into the SE process areas

A SySML model-based methodology to support system-software requirement capturing is
currently investigated and experimented in the context of the ESA/ESTEC System and
Software Functional Requirements Techniques (SSFRT) project, with consortium led by
Intecs.

3. Background on Model Checking

A model checker [Model-Checking-McM, Model-Checking-Sur] takes as input a system
description (using a suitable programming language) and a system property (typically
defined by means of the same language used to define the system or by means of a
suitable temporal logic such as CTL [Model-Checking-Sur]) and returns PASS if the
system satisfies the given property, FAIL otherwise. In the latter case a model checker

also shows a system run (counterexample) falsifying the given property. Figure 3.1
summarizes the above scenario.

Figure 3.1. Model Checking

The main difference between model checking and testing is that while testing can only
show presence of errors (by exhibiting an error trace) a model checker can also show
absence of errors (when it returns PASS). On the other hand, testing is computationally
much lighter than model checking. Indeed, the main obstruction to model checking is the
state explosion problem, that is the fact that the number of states of a system may be
exponential in the size of the description of the system itself. For example a procedure with
just one 32-bit integer variable may generate 232 possible states. Analogously an array of
size n of integer variables yields 232n states. The success of model checking rests on the
fact that efficient techniques have been devised to counteract the state explosion problem
(which cannot be eliminated being the reachability problem PSPACE complete).

Many model checking algorithms and tools are available. Depending on the application
domain one approach will work better than another. For this reason many model checkers
are available each targeting a particular class of systems. System level analysis requires
considering models describing software behaviour (discrete state changes) as well as
models describing the behaviour of physical devices (continuous state changes). This calls
for model checkers for hybrid systems such as HyTech [HybridSys], UPPAAL [UPPAAL],
CMurphi [CMurphi, CMurphi-HS], HYSDEL [HYSDEL], HSMV [HSMV]. Since the systems
we consider here can be modelled using Linear Hybrid Automata [HybridSys] we will use
HyTech in this study.

COUNTEREXAMPLE
That is, a sequence of events (states)
violating the given specifications.

System Model.
For example: SysML, VHDL, Verilog, C,
C++, Java, SDL, ESTEREL, Simulink,
UML, Petri Nets.

System Properties.
For example: UML, SysML, C, CTL,
PSL.

Model Checker
(Equivalent to Exhaustive Testing!!)

PASS
That is, we are sure that there exists
no sequence of events (states)
violating the specifications.

4. Description of our Running Example: A Temperature Control System (TCS)

To clarify the forthcoming discussion we will use as a running example the (system level)
modelling of a simple oven temperature regulator. This is indeed a typical on-board
equipment.

We are given a heater that can be ON or OFF. The heater is used to keep an oven (for
example for on-board instrumentations) always in a certain interval of temperature. For our
purposes we can assume that the oven temperature τ follows (approximately) the following
equations:

a1 ≤ dτ/dt ≤ a2 (Heater ON) and (τ < τ MAX) (Eq. 1)
dτ/dt = 0 (τ ≥ τ MAX) or (τ ≤ τ MIN) (Eq. 2)

b1 ≤ dτ/dt ≤ b2 (Heater OFF) and (τ > τ MIN) (Eq. 3)
where:

• Variable τ(t) is the oven temperature at time t,

• Constants a1 and a2 give, respectively, the lower and upper bounds for the oven
heating speed.

• Constants b1 and b2 give, respectively, the lower and upper bounds for the oven
cooling speed.

• TMIN is the min temperature the oven will reach if the heater is kept OFF.

• TMAX is the max temperature the oven will reach if the heater is kept ON.

Intuitively, the speed of variation of the oven temperature (dτ/dt) is bounded as shown in
Equations 1, 2, 3. The oven temperature increases with a speed in [a1, a2] ([b1, b2]) when
the heater is on (off). Since b1 and b2 are negative we have that when the heater is off the
temperature actually decreases. Furthermore, from Eq. 2 we see that the temperature
cannot rise above TMAX when the heater is on and cannot drop below TMIN when the heater
is off.
The goal of the temperature regulator is to keep the oven temperature always in the
interval [T1, T2] with T1 = 13°C and T2 = 17°C. To this end the temperature regulator will
measure the oven temperature and will turn the heater ON whenever the temperature falls
below Tlow = 14°C and will turn the heater OFF whenever the temperature rises above Thigh
= 16°C.
The following table summarizes the value for the system parameters as well as their
meaning.

Parameter
Name

Value Short Description

a1 0.1 °C/s Min heating speed
a2 0.2 °C/s Max heating speed
b1 -0.02 °C/s Value |b1| gives the max cooling speed
b2 -0.01 °C/s Value |b1| gives the min cooling speed
TMIN -50 °C Min temperature achievable
TMAX 30 °C Max temperature achievable
T1 13 °C Min safe temperature
T2 17 °C Max safe temperature
Tlow 14 °C Turn on temperature for the heater
Thigh 16 °C Turn off temperature for the heater
SNSR_TOL To be defined Max error in sensor reading
DLY To be defined Max delay in heater controller

Table 4.1. System Parameters

The values for the parameters SNSR_TOL and DLY will be an output of the system level
analysis activity. In fact, in order to save on hardware, we would like to make SNSR_TOL
and DLY as large as possible. However, if SNSR_TOL or DLY are too large the controller
may not be able to keep the oven temperature within the desired range. We would like to
get admissible values for SNSR_TOL and DLY from the formal system level analysis
activity.

5. SysML Model for the Temperature Control System

Our Temperature Control System (TCS) consists of a sensor measuring the oven
temperature, an oven heater and a controller that turns the oven heater ON or OFF. The
controller itself is a program running on a CPU on which other processes are also running.
In the following we outline a SysML model for TCS and its requirements.

The SysML bdd in Figure 5.1 defines the system requirements (with the block
<<requirement>>). The requirement block states that the oven temperature temp

should be between 13° C and 17° C (T1 and T2 from Table 4.1). Figure 5.2 shows TCS
structure. From such figure we see that TCS consists of 3 subsystems: a sensor, a
controller and an oven.

Block Sensor variables are: sensorMode (ranging on STM Sensor states, i.e.

SensorModeType) and temp (ranging on oven temperature). Block Sensor signals are

LowTemp and HighTemp. Block Ctr variables are: ctrMode (ranging on STM Ctr states,

i.e. CtrModeType) and timer measuring sojourn times in STM Ctr states. Block Ctr

signals are HeaterOn and HeaterOff. Block Oven variables are: ovenMode (ranging

on STM Oven states, i.e. OvenModeType) and temp (ranging on oven temperature).

Figure 5.2 shows the internal block structure for TCS. It is a classical feedback control
system where the controller (Ctr) turns the oven heater (Oven) on or off depending on the

oven temperature readings (Sensor). Note that for easy of presentation, our sensor reads

the oven temperature and also sends signals triggering the controller.

Figure 5.1. SysML TCS Requirements

Figure 5.2. SysML TCS Subsystems

In the following we outline our SysML model for Oven. SysML models for Sensor and Ctr

are obtained along the same line of reasoning.

Figure 5.3 shows block Oven constraints, Figure 5.4 shows the Oven state machine.

Figure 5.3. SysML Oven Constraints

Figure 5.4. SysML Oven STM

State machine Oven in Figure 5.4 defines the possible oven modes: the heater is on

(Heater_On), the heater is off (Heater_Off), the maximum temperature has been

reached (Heater_On_SAT), the minimum temperature has been reached

(Heater_Off_SAT).

Constraint Heater_On in Figure 5.3 defines the invariant for state Heater_On (i.e. temp

<= TMAX) as well as the oven temperature temp dynamics (i.e. a1 <= D(temp) <= a2)
accordingly to Eq. 1 in Section 4.

Constraint Heater_Off in Figure 5.3 defines the invariant for state Heater_Off (i.e.

temp >= TMIN) as well as the oven temperature temp dynamics (i.e. b1 <= D(temp)

<= b2) accordingly to Eq. 3 in Section 4.

Constraint Heater_On_SAT in Figure 5.3 defines the invariant for state Heater_On_SAT

(i.e. temp >= TMAX) as well as the oven temperature temp dynamics (i.e. D(temp) =

0) accordingly to Eq. 2 in Section 4.

Constraint Heater_Off_SAT in Figure 5.3 defines the invariant for state

Heater_Off_SAT (i.e. temp <= TMIN) as well as the oven temperature temp dynamics

(i.e. D(temp) = 0) accordingly to Eq. 2 in Section 4.

When Oven in Figure 5.4 receives a signal HeaterOn (HeaterOff) from the controller

(Ctr) it turns the heater on (off) thus moving to state Heater_On or Heater_On_SAT

(Heater_Off or Heater_Off_SAT).

Note how using SysML constraint blocks and state machines we can easily model systems
with different operational modes.

6. Mapping SysML Models to HyTech

As discussed in Section 3, all model checkers have essentially two inputs: a formal model
and a formal specification. The (formal) model defines the behaviour of the system at hand
whereas the (formal) specification defines a property that the model is supposed to satisfy.
The model checker will then check if indeed the model does satisfy the given specification
and, if not, it will return a counterexample, that is, a model execution trace falsifying the
given specification.

From the above it is clear that in order to map SysML models into the input language for a
model checker we need to build a formal model and a formal specification starting from the
given SysML model. The natural approach is to map SysML blocks defining requirements
to formal specifications and SysML blocks defining behaviours to formal models. Of
course, the way this is actually done, depends on how the target model checker defines
models and specifications.

For example, if we use a model checker like SMV [SMV] or SPIN [SPIN] then we have a
language to define (temporal logic) formal specifications and another different language to
define the system formal model. On the other hand, many model checkers for hybrid
systems (including HyTech) use the same language to define both the formal model and
the formal specifications. This is due to the fact that such model checkers only handle
safety properties that, in turn, can be easily defined as set of (safe) system states. Set of
states can be easily defined with a monitor returning true if a state is in the set and false

otherwise. Such monitor can be easily defined using the model checker modelling
language which is then also used to define safety specifications. In such cases the model
checking problem comes down to check that no unsafe state can be reached from an
initial state during the system evolution. Accordingly, when using such kind of model
checkers, both SysML requirement blocks and behavioural blocks are mapped into the
model checker system model with requirement blocks being used to define the set of safe
(or unsafe) states.

Model checkers expect a formal definition of the system behaviour. Thus, to enable
translation from SysML to HyTech a formal semantics for SysML diagrams describing
behaviours has to be given. This can be done by suitably refining SysML semantics. In
the following we show how we can build a HyTech model for the
TemperatureControlSystem SysML model in Section 5. In Section 7 we will present

some system level formal validation result using our HyTech model.

6.1. HyTech Model for TCS

Formal validation of SysML models enables system level requirement formal validation.
This, in turn, allows detection of errors since from the first system engineering activities
(such as definition of system requirements). In order to support automatic formal validation
of SysML models in this section we show how mapping from SysML models to HyTech
can be done. Of course, the actual translation strategy depends on how SysML models
are defined (for example the language used to define the continuous dynamics) as well as
on the target model checker. To give concreteness to our presentation we will present the
general principles underlying the mapping strategy together with a running example
showing how the general mapping strategy is to be applied on a small yet meaningful
example. HyTech models systems as a set of Linear Hybrid Automata (LHA). An LHA
consists of a finite set of locations and a finite set of real valued variables. A state s of an
LHA is a pair (loc, val) where loc is a location and val is an assignment of values to the
LHA real variables.

Time is continuous and only elapses when the LHA does not change location. On the
other hand, transitions form a location to a different one are assumed instantaneous. An
LHA can only stay in a location when the invariant for that location is true. An LHA moves
from a location to another by making transitions. LHA transitions are guarded, thus a
transition can be taken only if its guard is true. LHA variables may be assigned a value
(reset condition) when taking a transition.

LHA define the dynamics for the continuous variables by defining linear bounds for their
first time derivatives (rate condition). Each LHA location has its rate condition (as well as
its invariant).

Transitions may have synchronization labels. A transition with synchronization label a can
only be taken together with another transition (in a different LHA) labelled with also with a.

As for most model checker, HyTech input is textual. However LHA have a helpful graphical
representation that we will use to illustrate our mapping from SysML to HyTech. When
using a graphical representation an LHA is seen as a labelled directed graph which
vertices represent LHA locations and edges LHA transitions. Accordingly, each vertex is
labelled with the location name, its invariant and its rate condition whereas each transition
is labelled with its guard, reset condition and synchronization label, if any.

6.2. Oven Model

Figure 6.1 shows our LHA for the oven model from Section 5. We see that locations,
transition and transition guards in Figure 6.1 are those in the STM in Figure 5.4 of Section
5. State invariants and rate conditions in Figure 6.1 are obtained from the constraints in
Figure 5.3 in Section 5. In Figure 6.1 we have denoted the fist time derivative of variable x
with D(x).

heater_is_on
Temp <= Tmax

a1 <= D(Temp)

<= a2

heater_is_off
Temp >= Tmin

b1 <= D(Temp) <= b2

heater_is_on_sat

Temp >= Tmax

D(Temp) = 0

heater_is_off_sat

Temp <= Tmin

D(Temp) = 0

heater_off

heater_on

Temp >= Tmax

heater_off

heater_on

heater_off

heater_on

Temp <= Tmin heater_on

heater_off

Temp = 15

Figure 6.1. Oven LHA

7. System Level Validation Results

HyTech, as most model checkers for hybrid systems, only handles safety properties. This
is done by defining a set of unsafe states and then carrying out a reachability analysis to
check that no unsafe state is reachable from an initial state. For HyTech this is done by
defining the set of error states, that is the set of states that violates the safety
requirements, and then asking HyTech to check if there exists an error state reachable
from an initial state.

As for TCS, from the <<requirement>> block in Figure 5.1 in Section 5 we see that the

set of error state is defined as the set of states satisfying the constraint: “(Temp <= 13)

or (Temp >= 17)”. Running HyTech returns the conditions under which the safety

property defined in the <<requirement>> block in Figure 5.1 in Section 5 is violated.

The results are in Figure 7.1.

Conditions under which TCS violates
safety requirements (HyTech output).

(SNSR_TOL > 1)
OR

(5*SNSR_TOL + DLY > 5)

Conditions under which TCS meets
safety requirements.

(SNSR_TOL <= 1)
AND

(5*SNSR_TOL + DLY <= 5)

Figure 7.1. Validation Results

Figure 7.2 gives examples of safe and unsafe settings for our system (SNSR_TOL) and
software (DLY) parameters.

Setting ID SNSR_TOL DLY System Level Formal Validation Result
1 1.5 2 FAIL
2 0.5 2 PASS
3 0.5 2.4 PASS
4 0.5 3 FAIL

Figure 7.2. Safe and Unsafe Settings

8. Linking SysML Formal Validation to Subsystem Formal Verification

Typically subsystems are not defined using SysML but rather using specialized languages.
For example: a subsystem implemented with digital hardware may be defined using
Verilog, VHDL, SystemC, Esterel; a subsystem implementing a control system may be
defined using Simulink; a subsystem implemented using software may be defined using
SDL, C or Java; a subsystem detailed specification may be defined using Petri Nets.
However, in order to guarantee proof continuity a formal link must be established between
such subsystem definitions and the SysML system level model. Failing of establishing
such link will make our system model a throw-away model without any formal link to the
following design steps. As a result, we may formally validate a system level design that
however may have nothing to do with the actual system built.

We can support proof continuity in our framework by using an assume-guarantee
verification approach to establish a formal link between system level validation and
subsystem verification. To this end we proceed as follows.

First, resting on the assumption that subsystems (software or hardware) meet their
requirements, we verify that the overall system meets its system level requirements. This
verification activity indeed validates the subsystems requirements since it shows that
subsystem requirements are correct (i.e. we are building the right subsystems). For
example, the results in Section 7 verify (guarantee) the TCS satisfies its requirements (in
Section 5) assuming that the implementations of TCS subsystems (i.e. sensor, controller,
oven) behave accordingly to their specifications. Note that the requirements being
validated here are those of the subsystems.

Second, we guarantee that indeed the subsystems (software or hardware) meet their
requirements. This is done by showing, for example by using model checking techniques,
that the implementation of each subsystem satisfies the specifications defined using its
SysML model. Of course, depending on how the subsystem is implemented, a suitable
model checker will be used. For example, a hardware subsystem can be formally verified
using a hardware model checker (e.g. [Cadence]) whereas a control system defined using
Simulink could be formally verified using Lustre [Simulink2Lustre].

Note that, as for model checking purposes, in the system level validation activity we map
SysML requirements into formal specifications and SysML behavioural models into formal

models. On the other hand, when using model checking tools to link subsystems formal
verification to system level validation, we map SysML model for subsystems into formal
specifications and implementations for subsystems to formal models. Figure 8.1
summarizes the outlined approach.

Figure 8.1. Assume-Guarantee Verification Approach

9. Conclusions

Our investigation shows that, with some semantic refinements, SysML can effectively be
used to define system requirements and behavioural models suitable for formal verification
via model checking. We note that system level formal verification is indeed a validation for
the subsystem models since it shows that if the subsystems behave accordingly to their
models then the system requirements will be satisfied. Accordingly, subsystem models can
then be used as specifications for the implementation of subsystems. This, in turn, defines
a formal link between system level requirements analysis and design of subsystems (proof
continuity).

References

[Cadence] Cadence Incisive Platform: http://www.cadence.com/products/functional_ver

[CMurphi] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci, Marisa
Venturini Zilli: Exploiting transition locality in automatic verification of finite-state concurrent
systems, International Journal on Software Tools for Technology (STTT) 6(4): 320-341
(2004)

[CMurphi-HS] G. Della Penna, B. Intrigila, I. Melatti, M. Minichino, E. Ciancamerla, A.
Parisse, E. Tronci, and M. Venturini Zilli. Automatic verification of a turbogas control
system with the murphi verifier. In Proc of: Hybrid Systems: Computation and Control
(HSCC) Prague, Czech Republic, Lecture Notes in Computer Science, Vol. 2623,
Springer, 2003.

[CMurphi] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci, Marisa
Venturini Zilli: Exploiting transition locality in automatic verification of finite-state concurrent
systems, International Journal on Software Tools for Technology (STTT) 6(4): 320-341
(2004)

[ContDyn-SysML-08] Thomas Johnson, Christiaan Paredis, Roger Burkhart, Integrating
Models and Simulations of Continuous Dynamics into SysML, Technical report, Jan 2008

Assume-Guarantee Verification Approach within SysML

System Level Validation:
 SysML Requirements � Model Checker Specification,
 SysML models � Model Checker Model

Subsytem Verification:
 SysML models � Model Checker Specification,
 Subsystem implementation (or model) � Model Checker Model

[ECSS-ST-E10C] ECSS E-ST-10C, Space Engineering, System Engineering General
Requirements, 6 March 2009.

[HSMV] Federico Mari, Enrico Tronci. CEGAR Based Bounded Model Checking of
Discrete Time Hybrid Systems. 10th International Conference on “Hybrid Systems:
Computation and Control” (HSCC), 3-5 Aprile 2007, Pisa, Italy, LNCS, Springer.

[HybridSys] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho, Automatic
symbolic verification of embedded systems, IEEE Transactions on Software Engineering
22:181-201, 1996.

[HYSDEL] F. D. Torrisi, A. Bemporad, HYSDEL - a tool for generatine computation hybrid
models, IEEE Trans. On Control Systems Technology, 12(2):235-249, March 2004

 [ISO15288] ISO/IEC 15288, System engineering, System life cycle processes, 2008.

[Model-Checking-McM] K. L. McMillan. Symbolic model checking. Kluwer Academic
Publishers, Massachusetts, 1993.

[Model-Checking-Sur] Edmund M. Clarke, Orna Grumberg, Doron A. Peled,
Model Checking, Cambridge, Mass., MIT Press, 1999.

[MC-SysML-ECSB07] Yosr Jarraya, Andrei Soeanu, Mourad Debbabi, Fawzi Hassaıne,
Automatic Verification and Performance Analysis of Time-Constrained SysML Activity
Diagrams, Proceedings of the 14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems (ECBS'07)

[Simulink2Lustre] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, F. Maraninchi, Defining
and Translating a “Safe” Subset of Simulink/Stateflow into Lustre, EMSOFT’04, September
27–29, 2004, Pisa, Italy, ACM

 [SPIN] Gerard J. Holzmann, The SPIN Model Checker: Primer and Reference Manual,
Addison-Wesley Professional (September 4, 2003)

[SysML] OMG Systems Modelling Language(OMG SysML), V. 1.1, downloadable
from http://www.omg.org, May 2008.

[SYsML-PetriNets-ETFA-2007] Marcos V. Linhares, Rˆomulo S. de Oliveira, Jean-Marie
Farines, Francois Vernadat, Introducing the Modeling and Verification process in SysML,
ETFA'2007 - 12th IEEE Int. Conf. on Emerging Technologies and Factory Automation.

[SysML2SystemC] Mauro Prevostini, Elena Zamsa, SysML Profile for SoC Design and
SystemC Transformation, Technical Report, Univ. of Lugano,
http://www.prevostini.ch/publications.htm

[SMV] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10^20 states and beyond. Inf. Comput., 98(2):142-170, 1992.

[UPPAAL] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal: Status and
developments. In Orna Grumberg, editor, Computer Aided Verification, 9th International
Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254 of
Lecture Notes in Computer Science, pages 456–459. Springer, 1997.

