
CEGAR Based Bounded Model Checking of
Discrete Time Hybrid Systems

Federico Mari and Enrico Tronci�

Dipartimento di Informatica, Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

Tel.: +39 06 4991 8361; Fax: +39 06 8541 842
{mari,tronci}@di.uniroma1.it

Abstract. Many hybrid systems can be conveniently modeled as Piece-
wise Affine Discrete Time Hybrid Systems PA-DTHS. As well known
Bounded Model Checking (BMC) for such systems comes down to solve
a Mixed Integer Linear Programming (MILP) feasibility problem.

We present a SAT based BMC algorithm for automatic verification of
PA-DTHSs. Using Counterexample Guided Abstraction Refinement (CE-
GAR) our algorithm gradually transforms a PA-DTHS verification prob-
lem into larger and larger SAT problems.

Our experimental results show that our approach can handle PA-
DTHSs that are more then 50 times larger than those that can be handled
using a MILP solver.

1 Introduction

Automatic analysis of Hybrid Systems poses formidable challenges both from a
modeling as well as from a verification point of view. In fact the simultaneous
presence of continuous and discrete variables may soon lead to state explosion,
thus preventing completion of the verification process.

Many verification tools (model checkers) are available for automatic verifica-
tion of hybrid systems. Here are a few examples. Linear Hybrid Systems (LHS)
can be verified using HyTech [18,2,1]. If we restrict ourselves to LHSs in which all
continuous variables have time derivative equal to 1 (clocks) then the UPPAAL
[20,29] model checker can be used.

If we use a discrete model for time then we have Discrete Time Hybrid Sys-
tems (DTHSs). Many systems can be modeled or approximated using DTHSs.
A model checker for (possibly nonlinear) DTHS is CMurphi [25,13,7].

Tools originally designed for hardware verification have also been used for
hybrid systems verification. For example, in [28] SMV [23,26] has been used for
verification of chemical processing systems.

By restricting our attention to linear DTHS we can design more efficient veri-
fication algorithms. Piecewise Affine Discrete Time Hybrid Systems (PA-DTHS)
are an important subclass of DTHS. PA-DTHSs are DTHS whose behaviour can

� Corresponding author.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 399–412, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

400 F. Mari and E. Tronci

be defined using linear constraints involving real as well as discrete variables.
An important subclass of PA-DTHSs are Discrete Hybrid Automata (DHA).

For DHA quite efficient Mixed Integer Linear Programming (MILP) based ver-
ification algorithms have been designed [4] and implemented within the symbolic
DHA model checker HYSDEL [27,19].

SAT based Bounded Model Checking (BMC) [5,14] has turned out to be quite
effective on hardware (e.g. see [21,31]), as well as on software systems (e.g. see
[10,9]). Thus trying to use BMC in a DTHS setting is a quite natural step. For
HYSDEL DHA this has been studied in [15].

Another interesting class of PA-DTHS is the one that can be handled by
MathSAT [3,22]. SAT based Counterexample Guided Abstraction Refinement
(CEGAR) [11] has also turned out to be a quite effective enhancement to BMC.
This is the case for hardware verification (e.g. see [21]) as well as for software
verification (e.g. see [17]). Our main contributions can be summarized as follows.

In Section 3 we define a quite large class of Piecewise Affine DTHS. Our
class of DTHSs strictly contains those that can be handled by, e.g., UPPAAL,
HYSDEL or MathSAT (Section 4).

In Section 5 we show how the BMC problem for a DTHS H in our class can be
cast as an MILP feasibility problem PH. Of course, following [4], we could solve
such MILP problem using a solver (e.g. GLPK [16], or CPLEX [12]). However
for feasibility problems having many discrete variables (our target here) MILP
solvers tend to be rather inefficient. For this reason our approach will be that of
transforming our BMC problem for DTHSs into a SAT problem.

In Section 6 we give a sound and complete (up to ε) algorithm to transform
our MILP problem PH into a Boolean Linear Programming (BLP) problem F ε

H.
Our ε approximation of PH only discretizes the continuous variables of PH.
Effectiveness of our transformation rests on the fact that we do not discretize
the real coefficients of the constraints in PH. Instead, for each contraint we
generate a compact CNF (conjunctive normal form) representation of the set of
assignments that falsify it.

In Section 7 we show how our BLP problem F ε
H can be effectively transformed

into an equivalent SAT problem Bε
H.

In Section 8, building on the transformation defined in Sections 7, we present
a CEGAR based algorithm to solve our BLP problem F ε

H using a SAT solver.
This yields a SAT based CEGAR BMC algorithm for our class of DTHSs. To
the best of our knowledge for the class of systems we consider here no CEGAR
BMC algorithms have been proposed in the literature. For example, our class of
systems cannot be handled by the BMC algorithm proposed in [15].

In Section 9 we present experimental results showing effectiveness of the pro-
posed approach. Given a DTHS H in our class we have essentially two ways of
carrying out BMC: use an MILP solver to check feasibility of PH or use our SAT
based CEGAR approach. We present experimental results showing that using
our SAT based CEGAR approach we can handle systems that are more than 50
times larger than those that can handled by an MILP solver.

CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems 401

2 Background

Notation 1. Let X = [x1, . . . xn], Y = [y1, . . . yn], be finite sequences (lists) of
variables. By abuse of language we may regard sequences as set and we use ∪
to denote list concatenation. We denote with f(X := Y) the expression f([xi :=
yi|i = 1 . . . n]), that is the simultaneous substitution of the variables in X with
those in Y . Moreover if X is clear form the context we just write f(Y) for
f(X := Y).

Let x ∈ X , we denote with Dx the domain of x, that is the set on which
x ranges. A valuation (over a list of variables X) is a function that maps each
variable x ∈ X to a value in Dx. That is, a valuation is a point in ×x∈XDx.

A linear expression over a list of variables X is a linear combination of variables in
X with real coefficients. A constraint (over a list of variables X) is an expression
of the form α ≤ b where: α is a linear expression and b is a real constant. A
convex predicate (over a list of variables X) is a finite conjunction of constraints.
A predicate is defined as follows. A convex predicate is a predicate. If A and
B are predicates then (A ∧ B) is a predicate and (A ∨ B) is a predicate. As a
syntactic sugar, if y is a discrete variable we will write y < b for y ≤ b − 1, y > b
for y ≥ b + 1, y �= b for ((y ≤ b − 1) ∧ (y ≥ b + 1)).

Classically a Mixed Integer Linear Programming (MILP) problem [8] is a linear
optimization problem. However, in our context, we are only interested in finding
feasible solutions. For this reason our definition of MILP does not include an
objective function to be minimized.

Definition 1. Let M(X) be a convex predicate. The Mixed Integer Linear Pro-
gramming (MILP) problem for M(X) consists in finding a valuation V s.t.: 1.
M(V) holds 2. for all x ∈ X, V (x) ∈ Dx. In other words we are looking for a
satisfying assignment for the variables of M . An Integer [Boolean] Linear Pro-
gramming (ILP [BLP]) problem is an MILP problem with only integer [boolean]
variables.

Usually an MILP problem P is represented as a list of constraints. That is P =
{
∑n

j=1 aijxj ≤ bj | i = 1, . . .m and for j = 1, . . . n, xj ∈ Dxj }. Using standard
MILP techniques (e.g. [8]) it is possible to prove the following propositions.

Proposition 1. Given a predicate P (X) there exist a list Q of boolean variables
and a convex predicate L(Q, X) s.t. ∀X [P (X) iff ∃QL(Q, X)].

Proposition 2. Given an MILP problem P there exists an MILP problem
Align(P) s.t. 1. P is feasible iff Align(P) is feasible; 2. All variables in Align(P)
are nonnegative.

Proposition 3. Given an ILP problem P there exists a BLP problem Q s.t. 1.
P is feasible iff Q is feasible; 2. All variables in Q are boolean.

It can be easily shown [8] that, in general, MILP feasibility is an NP-complete
problem. However there are quite effective solvers (e.g. CPLEX [12], GLPK [16])
that can handle non trivial MILP optimization problems.

402 F. Mari and E. Tronci

Remark 1. Note however that MILP solvers are designed to solve optimization
problems rather than feasibility problems. In particular the branch-and-bound
heuristics typically implemented in MILP solvers are not effective on feasibility
problems since there is no objective function for computing the bound in the
branch-and-bound process.

For the above reason, state-of-the-art commercial MILP solvers like CPLEX
perform as poorly as state-of-the-art open source MILP solvers like GLPK on
MILP feasibility problems with many discrete variables (our case here). In fact,
feasibility problems do not have an objective function and thus CPLEX sophis-
ticated heuristics tend to be quite ineffective.

3 Piecewise Affine Discrete Time Hybrid Systems

In this section we introduce a class of Piecewise Affine Discrete Time Hybrid
Systems (DTHSs for short).

Many classes of piecewise affine hybrid systems have been studied in the lit-
erature, e.g. [2,20]. The same holds true for piecewise affine discrete time hybrid
systems, e.g. [4,27,15,3]. The class of systems we are considering is essentially
the one used in [30].

Definition 2. A Discrete Time Hybrid System (DTHS for short) is a 6-tuple
H = (Q, X, Init, Inv, r, R) where:

– Q = [q1, . . . qk] is a finite sequence of discrete variables. Each variable q ∈ Q
ranges on a finite subset [lq, uq] of the integers Z. Thus Dq = [lq, uq].

– X = [x1, . . .xn] is a finite sequence of real-valued variables. Each variable
x ∈ X ranges on a bounded interval [lx, ux] of the reals R. Thus Dx = [lx, ux].
Of course Q and X are disjoint lists.

– Init(Q, X) is a predicate over Q ∪ X.
– Inv(Q, X) is a predicate over Q ∪ X.
– r(Q, X, X ′) is a predicate over Q ∪ X ∪ X ′, where X ′ = [x′

1, . . .x′
n].

– R(Q, X, Q′, X ′) is a predicate over Q∪X ∪Q′ ∪X ′, where Q′ = [q′1, . . . q′k].

As usual primed variables denote “next state” values. Usually, when modeling a
DTHS, R is used to define reset transitions, that is R(q, x, q′, x′) implies q �= q′.
This is also our modeling style. However, from a formal point of view, Definition 2
only requires that R defines next state values for discrete states.

The list of state variables S for the DTHS H = (Q, X , Init, Inv, r, R) is S =
Q ∪ X . A state for H is a valuation s = (q, x) of S, where q is a valuation of Q
and x is a valuation of X .

A run for the DTHS H is a sequence (q(0), x(0)), (q(1), x(1)), . . . of
states of H such that the following conditions are satisfied: 1. Init(q(0), x(0))
∧ Inv(q(0), x(0)); 2. For all k ≥ 0, (R(q(k), x(k), q(k + 1), x(k + 1)) ∨
(r(q(k), x(k), x(k + 1)) ∧ q(k + 1) = q(k))) ∧ Inv(q(k + 1), x(k + 1)).

If π = (q(0), x(0)), (q(1), x(1)), . . . is a run of H we denote with π(k) the k-th
element of π. That is π(k) = (q(k), x(k)).

CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems 403

A state (q, x) of H = (Q, X , Init, Inv, r, R) is k-reachable if there exists a
run π of H and there exists a t ≤ k s.t. π(t) = (q, x).

In this paper we focus on bounded model checking of safety properties. That
is, our goal is to check that for system H no error state is k-reachable. To this
end we need to define the set of error states. This can be easily done using a
predicate. The above considerations lead to the following definition.

Definition 3. Let H = (Q, X, Init, Inv, r, R) be a DHTS, E(Q, X) be a
predicate over (Q ∪ X) and k be a natural number. We say that the triple (H,
E, k) is safe (or that H is k-safe w.r.t. E) iff there is no run π of H for which
there exists a t ≤ k s.t. π(t) = (q, x) and E(q, x) holds (i.e. E(q, x) = 1). In
other words, no k-reachable state of H satisfies E.

4 An Example of DTHS

We give an example of DTHS that will be useful to clarify the class of systems
we are targeting. Consider a system consisting of k water pumps and n > k
tanks. Pump i (i = 1, . . . k) has (discrete) position pi ∈ {1, . . . n}, where pi = j
means that pump i is above tank j. Each pump moves forward (wi = 1) and
backward (wi = 0) between positions 1 and n. Pump i starts from position i.
Each pump must stay in a position for at least α time units and must leave the
position after at most β ≥ α time units.

To compute the amount of water in a tank it is useful to introduce a boolean
variable zi,j s.t. zi,j = 1 iff water tank i is getting water from pump j, that is
zi,j = 1 iff pj = i. This can be defined with the predicate Zi,j = (zi,j = 0∨pj = i)
∧ (zi,j = 1 ∨ pj �= i).

Each tank may get water from any of the pumps. Water flows out from tank
i from a sink that can be open (ui = 1) or closed (ui = 0). The dynamics
of the water level xi of tank i satisfies the following constraint: Pi = (x′

i ≤
xi − γui +

∑k
j=1 ηzi,j) ∧ (x′

i ≥ xi − μui +
∑k

j=1 θzi,j), where: γ, μ model,
respectively, min and max flow of water out of tank i and η, θ model, respectively,
max and min flow of water out of pump j.

Water demand is modeled as follows. A tank sink can stay open for at most
ζ time units and can stay closed for at most ξ time units. Moreover, the number
of open sinks is at most Λ ≤ n and at least Γ ≤ Λ ≤ n. That is,

∑n
i=1 ui ≥ Γ

and
∑n

i=1 ui ≤ Λ. From the above description we can define a DTHS H.
We expect that each tank i, has enough water (xi ≥ m), but not too much

(xi ≤ M). Thus the predicate E representing our error condition can be defined
as follows:

∨n
i=1((xi < m) ∨ (xi > M)).

Given an horizon k, our goal is to check that the triple (H, E, k) is safe.

Remark 2. Our class of DTHSs cannot be handled using the UPPAAL model
checker, since we are not restricted to clock variables (e.g. see [20]). For example,
tank water levels (xi) cannot be modeled as UPPAAL clocks.

Remark 3. Our class of DTHS cannot be handled with HYSDEL since in our
invariant we may have constraints consisting of discrete state variables. Such

404 F. Mari and E. Tronci

constraints are not handled by DHA (e.g. see [15]). For example our invariant
constraints

∑n
i=1 ui ≥ Γ ,

∑n
i=1 ui ≤ Λ cannot be handled using HYSDEL.

Moreover we can handle nondeterminism in the discrete time dynamics which
cannot be modeled with the DHA in [15].

Remark 4. Our class of DTHS cannot be handled using the MathSAT tool since
we have constraints involving continuous as well as discrete variables, whereas
MathSAT only handles constraints built out of one type of variables, i.e. only
continuous variables or only discrete variables (e.g. see [6]). For example xi’s
constraints in x′

i ≤ xi − γui +
∑k

j=1 ηzi,j , x′
i ≥ xi − μui +

∑k
j=1 θzi,j cannot

be modeled using MathSat since they involve continuous (xi) as well as discrete
(zi,j) variables.

5 BMC of DTHS as a MILP Problem

The BMC problem for DTHSs can be cast as an MILP problem. For DHA this
has been shown in [4]. Along the same line we can show that the same holds for
DTHS.

Theorem 1. Let H = (Q, X, Init, Inv, r, R) be a DTHS, E(Q, X) be an error
condition for H and k be a natural number. Then there exists a convex predicate
M(Y, Q0, X0, . . . Qk, Xk) s.t.

– All variables in Y are booleans;
– (H, E, k) is safe iff the MILP problem M(Y, Q0, X0, . . .Qk, Xk) does not

have a solution
– Let y, (q(0), x(0)), . . . (q(k), x(k)) be a solution to the MILP problem

M(Y, Q0, X0, . . . Qk, Xk). Then φ = (q(0), x(0)), . . . (q(k), x(k)) is a path in
H containing an error state. That is, there is a t ≤ k s.t. E(q(t), x(t)).

6 From MILP to BLP

A BMC problem for DTHSs can be transformed into an MILP problem (Theorem
1). In order to transform a BMC problem for DTHSs into a SAT problem,
here we show how an MILP problem can be transformed into a Boolean Linear
Programming (BLP) problem. We do this in three steps. First we transform
our MILP problem P into a problem P1 in which all variables are nonnegative
(Proposition 2). Second, given ε > 0, we transform problem P1 into an Integer
Linear Programming (ILP) problem P ε

2 (Proposition 4). Finally, we transform
P ε

2 into a BLP problem F ε (Proposition 3).
Approximating continuous variables with discrete ones generates discretiza-

tion errors. To account for such errors we relax P constraints. Let P be an
MILP problem and ε > 0. We define the ε-relaxation Pε of P which is obtained
by replacing the rhs b of each constraint in P with (b + ε). Thus ε defines the
relaxation we are willing to accept on P constraints.

CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems 405

The size of a linear constraint is the number of variables occurring in it.
The size of an MILP problem P (|P |) is the sum of the sizes of its constraints.
Because of lack of space we omit the proof of the following proposition.

Proposition 4. Given ε > 0 and an MILP problem P in which all variables
are nonnegative there exists a linear time (in |P |) algorithm Qε s.t. 1. Qε(P) is
an ILP problem. 2. If P is feasible then Qε(P) is feasible. 3. If Qε(P) is feasible
then Pε is feasible.

Assembling the transformations in Propositions 2, 4, 3 we can constructively
prove the following theorem.

Theorem 2. Let P be an MILP problem and let ε > 0. Then there exists a linear
time (in |P |) algorithm Lε s.t. 1. Lε(P) is a BLP problem. 2. (Soundness) If P
is feasible then Lε(P) is feasible. 3. (Completeness) If Lε(P) is feasible then Pε

is feasible. 4. If Lε(P) is feasible [infeasible] then ∀ε′ ≥ ε [∀0 ≤ ε′ ≤ ε] Lε′(P) is
feasible [infeasible].

Theorem 2 says that by using Lε(P) instead of P we never have false negatives.
That is we never declare safe an unsafe system. Moreover we never have false
positives using Lε(P) instead of Pε. On the other hand, Lε(P) may be feasible
and P may be infeasible. That is we may declare unsafe a safe system. Note
however that, as usual, by making ε small enough we can make the difference
between P and Pε arbitrarily small, at the price of making |Lε(P)| grow. Infact,
it can be shown that the number of boolean variables of Lε(P) coming from the
discretization of continuous variables is proportional to log2(ε−1).

Theorem 3, which proof we omit because of lack of space, guarantees that we
never run into an infinite sequence of false positives. That is by taking smaller
and smaller values for ε eventually we have that Lε(P) is infeasible (and so is P
by Theorem 2) or that Lε(P) is feasible and so is P .

Theorem 3. If P is infeasible then there exists ε > 0 s.t. Lε(P) is infeasible.

7 From BLP to SAT

Using Theorems 1 and 2, given a tolerance ε we can transform a BMC problem
for DTHS H into a BLP problem M . In this Section we show how M can be
transformed into a SAT problem.

Of course we may get a similar result by discretizing the real-valued coefficients
in the linear inequalities in M , implementing floating point arithmetic and then
translating the all problem into SAT. This is the approach followed, e.g., in the
CBMC model checker [9]. However, if we follow such an approach even small
systems will result in huge Conjunctive Normal Forms (CNFs), e.g. see the
CBMC manual in [9]. Hence here we follow a different approach.

We represent a constraint P in M with its non-satisfying assignments. This
yields an often compact CNF representation for P . The details follow.

Let P =
∑n

i=n aixi ≤ b be a constraint in M . We are looking for a CNF
F s.t. F (X) = 1 iff P (X) = 1. Let V be the set of assignments that make P

406 F. Mari and E. Tronci

1 int blp2sat (a, b) {m1 = 0; m2 = 0;
2 k = index of first undefined value in x;
3 if (k > n)
4 {if (

�n
i=1 a[i]x[i] > b) {F = (F ∧ clause(x)); return 1; }

5 else return 0;}
6 if (min(a, x) > b) {F = (F ∧ clause(x)); return 1;}
7 if (a[k] > 0) {x[k] = 1} else {x[k] = 0;}
8 m1 = blp2sat (a, b);
9 if (m1 > 0) { x[k] = 1 - x[k]; m2 = blp2sat (a, b); }

10 return (m1 + m2); }

Fig. 1. Sketch of algorithm BLP2SAT

false. That is, V = {x | P (x) = 0}. The characteristic function for V is: χV =∨
(v1,...vn)∈V

∧n
i=1 xvi

i , where xvi

i is (xi = vi). Thus x1
i = xi, x0

i = x̄i.
Let F (X) = ¬χV (X). Then P (X) = 1 iff F (X) = 1. In fact P (X) = 1 iff

χV (X) = 0 iff ¬χV (X) = 1. Now F (X) = ¬χV (X) = ∧(v1,...vn)∈V ∨n
i=1 xv̄i

i . Thus
F (X) is a CNF s.t. F (X) = 1 iff P (X) = 1.

Using the above procedure for all constraints in M we can build a CNF formula
W s.t. M(X) = 1 iff W (X) = 1.

Example 1. As an example, let X = [x1, x2, x3] and P (X) = 3x1+2x2+4x3 ≤ 5.
Then V = {(0, 1, 1), (1, 0, 1), (1, 1, 1)}. Thus F (X) = (x1∨x̄2∨x̄3) ∧ (x̄1∨x2∨x̄3)
∧ (x̄1 ∨ x̄2 ∨ x̄3).

Note that we do not need to discretize the real valued coefficients in the linear
inequalities of M . However, to make the above approach interesting we need to
generate F in a time efficient way and in such a way that F is not too large.

Our idea to produce a small CNF F in a fast way is the following. Let P =∑n
i=n aixi ≤ b. Let y = (y1, . . . yn) be an assignment s.t. P (y) = 0. If ai > 0

and yi = 0 then also for z = (y1, . . . yi−1, 1, yi+1, yn) we have P (z) = 0. Let
F be the CNF representing P . Then F = . . . ∧ (xy1

1 ∨ . . . ∨ x0
i ∨ . . . xyn

n) ∧
(xy1

1 ∨ . . . ∨ x1
i ∨ . . . xyn

n) ∧ . . . = . . .∧ (xy1
1 ∨ . . . ∨ x

yi−1
i−1 ∨ x

yi+1
i+1 ∨ . . . xyn

n).
That is, the value of yi matters only if it is 1. Analogously, if ai < 0 the value

of yi matters only if it is 0.
More formally, we say that variable yi is relevant in P for the assignment y

iff (ai > 0 ∧ yi = 1) ∨ (ai < 0 ∧ yi = 0). We denote with Γ (P, y) the list of
variables relevant in P for assignment y.

With the above considerations we can write the CNF for a constraint P as
follows: F (X) =

∧
v:P (v)=0

∨
x∈Γ (P,v) xv(x).

Example 2. A CNF for P as in Example 1 is: F = (x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄3).

The above considerations suggest that, if our goal is to find a non-satisfying
assignment, then we should first try setting to 1 the variables with large positive
coefficients and to 0 the variables with large (in modulo) negative coefficients.

To generate F in a fast way, as a first step we reorder variables x1, . . . xn so
that xi precedes xj in the ordering iff one of the following conditions hold: 1.

CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems 407

ai < 0 and aj < 0 and ai < aj ; 2. ai > 0 and aj > 0 and ai > aj ; 3. ai < 0 and
aj > 0.

Let v be a partial assignment for X . That is ∀x ∈ X v ∈ {0, 1, ⊥}. Function
clause(v) returns the clause

∨
x:v(x)∈{0,1} xv(x).

Putting all the above considerations together leads to the search-and-prune
algorithm sketched in the algorithm blp2sat() in Figure 1. As we shall see, our
experimental results show that the search-and-prune heuristic used in function
blp2sat() often allows us to quickly generate compact CNF representations for
a linear inequality

∑n
i=1 aixi ≤ b.

In the following we describe the algorithm blp2sat() in Figure 1. First of all,
blp2sat() assumes that variables have already been ordered as explained above.
Let P =

∑n
i=n aixi ≤ b our constraint. Function blp2sat() has two arguments:

the array a s.t. a[i] = ai and the rhs of P , b. The global variable x in blp2sat()
stores the partial assignments found during the computation.

Line 2 of blp2sat() in Figure 1 computes in variable k the index of the
first undefined assignment. If (line 3) this index is greater than n (number of
variables in P) then all variables have been assigned a value and we go to line
4. Since all variables are defined we can evaluate the lhs

∑n
i=1 a[i]x[i] of P . If∑n

i=1 a[i]x[i] > b (line 4) then constraint P is not satisfied and x contains a
non-satisfying assignment for P . In such a case we add to F the clause clause(x)
(line 4) and return 1, since we added one clause to F . If

∑n
i=1 a[i]x[i] ≤ b then

x is a satisfying assignment for P and thus we generate no clause and return 0
(line 5).

If k ≤ n then x[k] has not been assigned a value. Line 6 checks if there is
hope to complete x to a satisfying assignment. If this is not the case then we
add clause(x) to F (line 6) and return 1. If x may be completed to a satisfying
assignment we go to line 7 and choose the value of x[k] so as to make the lhs of
P as large as possible in an attempt to find a non-satisfying assignment. After
that in line 8 we recursively call blp2sat() and get in m1 the number of clauses
produced by the setting for x[k] chosen in line 7.

If the choice of x[k] in line 7 has not produced non-satisfying assignments
(m1 = 0) then, a fortiori, also the other possible assignment in line 7 for x[k]
will not produce any non-satisfying assignment. In other words, if m1 > 0 we
consider the assignment (1 - x[k]), line 9, else we do not need to. Finally, line 10,
we return the total number of non-satisfying assignments produced. Note how
the test in line 7 allows us to prune the search tree for non-satisfying assignments.

8 Solving an MILP Problem with a SAT Based CEGAR

Rather than transforming an MILP problem into a SAT problem in one big
step we can use a Counterexample Guided Abstraction Refinement (CEGAR)
approach to gradually transform an MILP problem into a SAT problem.

First of all, given a linear constraint P , we can modify blp2sat() in Figure 1
so that each time it is called it generates at most MaxClause new clauses for the
linear constraint P . The idea is that we can often prove correctness (UNSAT) or

408 F. Mari and E. Tronci

find an error (SAT) without generating all clauses for each constraint. This can be
done by storing the state σ of the computation of blp2sat(). State σ summarizes
all the information we need to save to safely stop and, above all, resume, the com-
putation of blp2sat(). Initially the state is empty (meaning blp2sat() is at its
start point). We call cegar-blp2sat() the version of blp2sat() thus modified.

In the following we describe the algorithm cegar milp2sat() that gradu-
ally transforms an MILP problem into a SAT problem using a CEGAR based
approach. A sketch of cegar milp2sat() is in Figure 2.

First, for each constraint (A[i], b[i]) (that is
∑n

j=1 A[i]jxj ≤ b[i]) we denote with
σi the state of the computation of blp2sat(A[i], b[i]). Initially σi is empty for i =
1, . . . n. In the following lines refer to function cegar milp2sat() in Figure 2.

The argument of cegar milp2sat() is an MILP problem P , i.e. the pair
(A, b).

Line 2 replaces P with Align(P) (see Proposition 2). Line 3, given the tolerance
ε and using Proposition 4, computes the number of bits needed for x in order to
achieve tolerance ε. Line 4 replaces in the MILP problem all continuous variables
with discrete ones (Proposition 4). Line 5 transforms all discrete variables into
boolean ones (Proposition 3). Line 6 initializes the state of the computation (i.e.
clause generation) for each constraint.

Line 7, for each constraint i initializes the history γ[i] of i. The history of con-
straint i records when i turned out to be false under a candidate solution ρ. More
specifically. Assume we are at iteration t of the while loop starting at line 9. The
history γ[i] is a bitvector of size m that has a 1 in position γ[i][j] iff at iteration
(t − (j − m + 1)) constraint i was false under assignment ρ. Thus to update γ[i]
we simply shift it of 1 bit to the right and set γ[i][m − 1] to 1 if the constraint is
not satisfied by ρ, to 0 else. In our implementation we have set m = 8.

Line 8 initializes to 1 (empty set) the generated CNF F . Line 9 begins the
main loop of cegar milp2sat(). Line 10 begins the CEGAR for loop. Lines 10-
12 generate an approximation of our MILP problem. Namely, for each constraint
i, in line 11 we order constraint variables as described in Section 7 and in line
12 we generate at most MaxClause clauses for constraint i with lhs coefficients
A[i] and rhs coefficient b[i] (function cegar blp2sat()). Line 13 calls the SAT
solver on CNF F . We use ZChaff [24,32] here as a SAT solver. The result may
be UNSAT or SAT with an assignment ρ.

If we get UNSAT we are done since the original problem is then also UNSAT
(line 14). However if we get SAT (line 15) the assignment ρ may not be a sat-
isfying assignment for MILP (A, b) since we only generated at most MaxClause
clauses for each constraint. In this case we go to line 16.

In lines 17-21, for each constraint i we update its history γ[i]. This is done
by shifting γ[i] one bit to the right and by writing a 0 (1) in the MSB (Most
Significant Bit) of γ[i] if ρ does (does not) satisfy constraint i.

If at the end of the loop in lines 17-21 no constraint has been found to be
false then ρ is a real counterexample and we return SAT (line 22).

Lines 23-25 of cegar milp2sat() for each constraint i compute in wi the
number of clauses to be generated by cegar blp2sat(A[i], b[i]). This number

CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems 409

1 void cegar_milp2sat(A, b) {
2 Align variables to Zero;
3 Compute number of bits for continuous variables;
4 Discretize Continuous variables;
5 Transform discrete variables into boolean variables;
6 Initialize computation state of cegar_blp2sat();
7 Initialize history γ to all 0s;
8 F = 1;
9 while (1) {

10 foreach i {
11 Order variables accordingly to coefficients;
12 F = F ∧ cegar_blp2sat(A[i], b[i]); }
13 sol = call_SAT_solver(F);
14 if (sol == UNSAT) {return (UNSAT);}
15 else {ρ = decode_SAT_assignment();}
16 oksat = 1;
17 for each constraint i {
18 shift γ[i] 1 bit to the right;
19 if (ρ does not satisfy constraint i)
20 {oksat = 0; γ[i][m − 1] = 1;}
21 else {γ[i][m − 1] = 0;} }
22 if (oksat == 1) { return (SAT);}
23 for each constraint i {
24 compute clauses to be generated wi using γ[i];
25 cegar_blp2sat(A[i], b[i]); }

26 let ρ′ be the assignment containing only the decision variables
in ρ;

27 add to F the clause ¬ρ. }}

Fig. 2. Sketch of algorithm cegar milp2sat()

Γ = 1 Λ = 1 γ = 1 μ = 2 θ = 1 η = 2 α = 2 β = 4 ζ = 3 ξ = 2 m = 6 M = 24

Fig. 3. Parameters for the water-tanks system in Section 4

is 0 if the constraint was true under the last found assignment ρ. Otherwise
it is greater than 0 and depends on the history of constraint i. Intuitively, the
more often and the more recently constraint i has turned out to be false, the
larger the values of wi. In any case wi ≤ MaxClause. After computing wi we call
cegar blp2sat(A[i], b[i]).

In line 26, from the SAT solver data structures we compute the decision
variables of ρ. Let ρ′ be the assignment containing only the decision variables in
ρ. In line 27 we add to F the clause ¬ρ′.

Eventually we get UNSAT or a real (not spurious) satisfying assignment.

9 Experimental Results

To assess effectiveness of our approach we have implemented the proposed algo-
rithms and compared their performance w.r.t. MILP based BMC verification.

Let (H, E, k) be a BMC problem. By using Theorem 1 we can transform
such BMC problem into an MILP problem P . We then have two choices: use an
MILP solver to check feasibility of P or use our SAT-CEGAR approach (Section
8) to check feasibility of P . In this section we compare these two approaches.

410 F. Mari and E. Tronci

GLPK SAT SAT-CEGAR

k h Output
Time
(secs) Output

Time
(secs) CL

Mem
(MB) Output

Time
(secs) CL

Mem
(MB)

1 7 SAT 88.09 SAT 3.12 334279 30.59 SAT 4.63 330318 30.56
2 4 SAT 4.95 SAT 5.66 600433 60.64 SAT 6.28 482930 47.74
3 4 UNSAT 7256.42 UNSAT 13.63 1.55e+06 123.96 UNSAT 3.09 370931 30.937
3 23 OOT UNSAT 1902.32 8.93e+06 837.253 UNSAT 21.43 2.13e+06 240.83
3 98 OOT OOM UNSAT 153.35 9.08e+06 839.641
4 9 OOT UNSAT 125.28 8.53e+06 833.473 UNSAT 9.79 1.1e+06 120.756
4 71 OOT OOM UNSAT 144.17 8.65e+06 836.938
5 3 OOT UNSAT 62.44 6.75e+06 627.688 UNSAT 4.07 473834 47.8307
5 54 OOT OOM UNSAT 139.58 8.52e+06 836.518
6 1 OOT UNSAT 46.99 5.21e+06 487.896 UNSAT 171.903 3.87e+06 381.539
6 48 OOT OOM UNSAT 157.57 8.2e+06 643.253

Fig. 4. Experimental results for the system in Section 4 with parameters in Figure 3

As a SAT solver we use ZChaff [24,32] a well know open source SAT solver. As
an MILP solver for comparison we use GLPK [16]. In view of Remark 1 using
GLPK rather than CPLEX [12] for our feasibility problems does not change
meaningfully the results.

We use the example in Section 4 to assess effectiveness of our approach. This
is a parametric example with most of the features that make life hard for reach-
ability analysis.

Let k be the number of pumps. The number of tanks n is set to 2k and the
system parameters are those in Figure 3.

Figure 4 shows our results when using GLPK, SAT without CEGAR (i.e.
with MaxClause set to ∞) and our SAT-CEGAR (Section 8) with MaxClause
set to 100. We set ε = 0.1, that is we accept a relaxation of 0.1 on P constraints
(Theorem 2). Note that (Theorem 2) if we get UNSAT then the original problem
is UNSAT and for each 0 ≤ ε′ ≤ ε we would get the same result (UNSAT).

The meaning of the columns in Figure 4 is the following.
Column k gives the number of pumps. The number of tanks is then n = 2k.

Column h gives the BMC horizon. Column Output gives the outcome of the
verification process. Namely, SAT if an error has been found within horizon h,
UNSAT else. Column Time gives the CPU time in seconds. We have set a time
limit of 180 minutes (10800 seconds) for the verification process. If a process
does not complete by such time limit we report Out Of Time (OOT) in column
Time. Column Mem gives the RAM used by the process. We report OOM if a
process runs out of memory (1GB of RAM in our case). Column CL gives the
number of clauses generated.

In our experiments we used a Mac Mini (CPU PowerPC G4 1.5 GHz; L2
Cache 512 KB; RAM 1GB).

For each k in Figure 4 we show the first horizon h to which we find an error
or the last horizon that we were able to handle before going out of time or out of
RAM. From Figure 4 we can clearly see how SAT behaves better than an MILP
solver (GLPK) and how our SAT-CEGAR approach behaves better than SAT.

Figure 6 gives some detail about the SAT-CEGAR computation time (y axes)
as a function of the horizon (x axes) with k = 3 pumps. We see that for SAT-
CEGAR computation times are almost a linear function of the horizon.

Figure 5 gives some information about the MILP problem generated from our
BMC problems.

CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems 411

MILP Problem

k h Rows Real
Vars

Non-
Bool
Int
Vars

Bool
Vars

Non-
zeros

1 7 965 40 8 219 1826
2 4 1413 50 10 406 2764
3 4 2751 75 15 927 5550
3 98 64979 1485 297 21795 133014
3 99 65641 1500 300 22017 134370
4 71 82087 1440 288 30732 172856
4 72 83241 1460 292 31164 175288
5 54 100759 1375 275 40585 217330
5 55 102621 1400 280 41335 221350
6 48 136309 1470 294 57714 299844
6 49 139143 1500 300 58914 306084

Fig. 5. MILP problems generated for the
water-tanks system in Section 4 with pa-
rameters as in Figure 3

Fig. 6. SAT-CEGAR. Times for k = 3
and n = 6

Summing up, our experimental results show that our SAT-CEGAR approach
can solve problems that are about 50 times larger than those that can be handled
with an MILP solver. Namely, from Figure 4 we see that SAT-CEGAR can solve
problems with k = 6 and h = 48 (i.e. 136309 linear constraints from Figure 5)
whereas GLPK stops at k = 3, h = 4 (i.e. 2751 linear constraints from Figure 5).

10 Conclusions

We have presented a SAT based BMC algorithm for automatic verification of
DTHSs. Using Counterexample Guided Abstraction Refinement (CEGAR) our
algorithms gradually transforms a DTHS verification problem into larger and
larger SAT problems.

Our experimental results show that our approach can handle DTHSs that are
more then 50 times larger than those that can be handled using an MILP solver.

Acknowledgements. We are very grateful to HSCC’07 referees for their helpful
comments on the submitted version of this paper.

References

1. url: http://www.eecs.berkeley.edu/∼tah/HyTech.
2. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of em-

bedded systems. IEEE Trans. on Software Engineering, 22, 1996.
3. G. Audermand, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying industrial

hybrid systems with mathsat. In Proc. of the 2nd Int. Workshop on Bounded Model
Checking, 2004.

4. A. Bemporad and M. Morari. Verification of hybrid systems via mathematical
programming. In Proc. of: HSCC, volume 1569 of LNCS. Springer, 1999.

5. A Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
bdds. In Proc. of TACAS, volume 1579 of LNCS. Springer, 1999.

6. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Juntilla, S. Ranise, P. van Rossum,
and R. Sebastiani. Efficient satisfiability modulo theories via delayed theory com-
bination. In Proc. of CAV, volume 3576 of LNCS, 2005.

412 F. Mari and E. Tronci

7. url: http://www.dsi.uniroma1.it/∼tronci/cached.murphi.html.
8. M. W. Carter and C. C. Price. Operations Research - A Practical Introduction.

CRC Press, 2001.
9. url: http://www.cs.cmu.edu/∼modelcheck/cbmc/.

10. Edmund Clarke and Daniel Kroening. Hardware verification using ANSI-C pro-
grams as a reference. In Proc. of ASP-DAC. IEEE Computer Society Press, 2003.

11. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proc. of CAV, LNCS. Springer,
2000.

12. url: http://www.ilog.com/products/cplex/.
13. G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli. Exploiting

transition locality in automatic verification of finite state concurrent systems. Inter-
national Journal of Software Tools for Technology Transfer (STTT), 6(4), 2004.

14. R. Raimi E. Clarke, A. Biere and Y. Zhu. Bounded model checking using satisfia-
bility solving. Formal Methods in system Design, 19:7–34, July 2001.

15. N. Giorgetti, G. J. Pappas, and A. Bemporad. Bounded model checking of hybrid
dynamical systems. In Proc. of 44th IEEE Int Conf. CDC, 2005.

16. url: http://www.gnu.org/software/glpk/glpk.html.
17. Anubhav Gupta and Ofer Strichman. Abstraction refinement for bounded model

checking. In CAV, volume 3576 of LNCS, pages 112–124, 2005.
18. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid

systems. Software Tools for Technology Transfer, 1, 1997.
19. url: http://control.ee.ethz.ch/∼hybrid/hysdel.
20. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal: Status and developments.

In CAV97, number 1254 in LNCS. Springer–Verlag, 1997.
21. B. Li, C. Wang, and F. Somenzi. Abstraction refinement in symbolic model check-

ing using satisfiability as the only decision procedure. Software Tools for technology
Transfer (STTT), 7(2):143–155, 2005.

22. url: http://mathsat.itc.it/.
23. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion

Problem. Kluwer Academic Publishers, 1993.
24. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-

neering an efficient sat solver. In 39th DAC, 2001.
25. G. Della Penna, B. Intrigila, I. Melatti, M. Minichino, E. Ciancamerla, A. Parisse,

E. Tronci, and M. V. Zilli. Automatic verification of a turbogas control system
with the murphi verifier. In Proc. of HSCC, LNCS. Springer, 2003.

26. url: http://www.cs.cmu.edu/∼modelcheck/.
27. F. D. Torrisi and A. Bemporad. Hysdel - a tool for generating computational hybrid

models. IEEE Trans. on Control Systems Technology, 12(2):235–249, March 2004.
28. A. L. Turk, S. T. Probst, and G. J. Powers. Verification of real-time chemical

processing systems. In HRTS, number 1201 in LNCS. Springer, 1997.
29. url: http://www.docs.uu.se/docs/rtmv/uppaal/.
30. R. Vidal, S. Schaffert, O. Shakernia, J. Lygeros, and S. Sastry. Decidable and

semi-decidable controller synthesis for classes of discrete time hybrid systems. In
In Proc. of 40th IEEE CDC, 2001.

31. url: http://vlsi.colorado.edu/∼vis.
32. url: http://www.princeton.edu/∼chaff/zchaff.html.

	Introduction
	Background
	Piecewise Affine Discrete Time Hybrid Systems
	An Example of DTHS
	BMC of DTHS as a MILP Problem
	From MILP to BLP
	From BLP to SAT
	Solving an MILP Problem with a SAT Based CEGAR
	Experimental Results
	Conclusions

