
On Placing Skips Optimally in Expectation

Flavio Chierichetti, Silvio Lattanzi, Federico Mari and Alessandro Panconesi
∗

Department of Computer Science
Sapienza University of Rome

Via Salaria 113 – 00198 Rome
{chierichetti,lattanzi,mari,ale}@di.uniroma1.it

ABSTRACT
We study the problem of optimal skip placement in an in-
verted list. Assuming the query distribution to be known in
advance, we formally prove that an optimal skip placement
can be computed quite efficiently. Our best algorithm runs
in time O(n log n), n being the length of the list.
The placement is optimal in the sense that it minimizes the
expected time to process a query. Our theoretical results are
matched by experiments with a real corpus, showing that
substantial savings can be obtained with respect to the tra-
ditional skip placement strategy, that of placing consecutive
skips, each spanning

√
n many locations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; F.2.0 [Analysis of Algorithms and
Problem Complexity]: General; E.1 [Data Structures]:
Lists, stacks, and queues

General Terms
Algorithms

Keywords
Inverted Index, Probabilistic Analysis, Skips

1. INTRODUCTION
The inverted index remains to this day one of the basic

data structures for query processing in web-search engines.
In this paper we study a fundamental problem for query
processing– how to place skips in an optimal way in an in-
verted index. To build an inverted index, documents in the
corpus are sorted according to some total order and, for each
term, a linked list is created that contains the documents in

∗This work is partially supported by a grant of Yahoo! Re-
search, by a contract with Enea under project Cresco, and
by the European Commission project DELIS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’08, February 11–12, 2008, Palo Alto, California, USA.
Copyright 2008 ACM 978-1-59593-927-9/08/0002 ...$5.00.

which the term appears. Crucially, the lists preserve the
total order. In this fashion answering a conjunctive query
of two or more terms becomes the task of merging the cor-
responding lists. A skip is a pointer i → j between non
consecutive documents i and j in a list. Skips are a very
effective way to speed up a merge operation.

Broadly speaking, the problem we address in this paper
is the following: is it possible to place skips optimally with
respect to the query distribution, when this is assumed to
be known in advance? Given the fundamental character of
this problem it is rather surprising that this has never been
tackled before in a systematic way (to the best of our knowl-
edge). The main approach remains that of [7] according to
which skips should be placed at regular intervals, i.e. one af-
ter the other, each spanning

√
ℓ elements, ℓ being the length

of the list. More related work is discussed in a section to
follow.

In this paper we formally prove that if the query distribu-
tion is known, then an optimal skip placement can be com-
puted efficiently. By “optimal” we mean a skip placement
that minimizes the expected processing time of a query, i.e.
the expected time to merge the lists of the terms in the
query. Crucially, the optimal skip placement can be com-
puted by very efficient polynomial-time algorithms. These
theoretical results are complemented by experiments with
real corpora showing that our algorithms yield substantial
savings in space and query processing time.

We now describe our contributions more precisely. A ba-
sic contribution of our paper is to introduce the notion of
useful document with respect to a query. Informally, a docu-
ment is useful for a query if it cannot be skipped. The query
distribution, assumed to be known, induces another distri-
bution on the documents that gives the probability that a
given document is useful for a query, when the query is cho-
sen at random. We shall denote this probability by p(dt),
where dt is the occurrence of document d in the list of the
term t (note that in general it can be p(dt) 6= p(dt′)). In
practice this distribution on the documents can be approx-
imated quite well and efficiently starting from a sample of
the query universe – see the discussion on the experimental
results below. Therefore we may assume to have, for every
d and t, the probability p(dt). Now, in general, the events
of the form “d is useful for t” are not independent. Working
under the simplifying assumption that they are we derive
several algorithms. The goal is to place skips in order to
minimize the expected query processing time, when a query
is presented at random. We say that a skip placement is
optimal for a term t if it minimizes the expected time to

15

process a query that contains t. To assess the performance
of our algorithms at query time we make use of hardware
independent measures.

There are several possible skip placement policies. The
general case is that of spaghetti skips where there are no
restrictions (apart from the obvious requirement that if i→
j is a skip then i < j) (see Fig. 1). An interesting special
case is that of simple skips where if a → b and c → d are
skips and a < c then it must be b < c.

x :
d

x
1 d

x
2 d

x
3 d

x
4 d

x
5 d

x
6 d

x
7 d

x
8

Figure 1: Spaghetti skips

It turns out that best results are obtained under a cer-
tain simplifying hypothesis that we now describe. Assume
that the last document of every list contains all terms (and
is therefore returned for every query). We call dictionaries
of this form doctored. This is equivalent to pessimistically
assuming that while computing a merge we always reach the
end of the list. This assumption eliminates low order prob-
ability effects while making it possible to exploit a much
richer combinatorial structure leading to our best perform-
ing algorithm.

Our algorithmic results are as follows. The input to the
algorithms is an inverted list of n elements for a term t,
where for each document occurrence dt the probability p(dt)
is known. Our experiments show that the probabilities p(dt)
can be computed quite efficiently by using a small sample of
the query universe. The algorithms are meant to be deployed
in the preprocessing phase to set up skips.

• An O(nt) time algorithm for optimal skip placement
for spaghetti skips, where t is the average length of
a skip. While O(nt) = O(n2), in practice t is much
smaller.

• An O(nt) time algorithm for optimal skip placement
for spaghetti skips, in the case of doctored dictionaries.

• An O(n2) time algorithm for optimal simple skip place-
ment.

• An O(n log n) time algorithm to place simple skips op-
timally in doctored dictionaries. This is the most im-
portant result of this paper in terms of algorithmic
sophistication and for its practical value. Our experi-
ments show that this algorithm computes skip place-
ments as good as those of the more general algorithms
above, while saving significantly in terms of space, run-
ning time, performance at query time and size of the
sample to collect statistics on document usefulness.

It is an interesting open problem to determine whether
spaghetti skip placement without assuming independence is
polynomially solvable.

We now turn to our experimental results. In the exper-
iments we use a web snapshot of the .uk domain. In the
experiments we assume that a steady stream of queries is
presented to the search engine. A small prefix of the query
stream is used to collect statistics on the usefulness of doc-
uments. We compare the skip placement of our algorithms

among themselves and with that of [7]. Although our theo-
retical results hold for any query distribution, in the exper-
iments we focus on the most relevant case, i.e. we assume
that the query distribution follows a power law. In partic-
ular we consider the exponents α = 0.79, 0.9, 1.1, 1.3. In
particular the first and the last are known to occur in prac-
tice [1]. Our experiments show that by placing skips with
our algorithms yields significant savings in terms of space
and query processing time. The algorithm of choice is the
fastest O(n log n) algorithm for simple skips in doctored dic-
tionaries. We consider this as evidence that it does not pay
off to consider more sophisticated stochastic modelling such
as the general, non independent, case.

Although a more thorough assessment with a larger corpus
would be of interest, we believe that our experiments provide
good evidence already of the usefulness of our algorithms.

2. RELATED WORKS
Skips in inverted indeces have been studied from a number

of different point of views [4, 7]. It seems however that
the problem addressed here–how to optimize the placement
with respect to the input distribution–has not been studied
before.

The classical approach of [7] is to place
√

n skips, each of
approximate length

√
n, one after another, where n is the

length of the list. No attempt is made to gear the placement
toward the query distribution.

In [8] so-called skip lists were introduced. Although some-
what related to skips, the terminology is somewhat mislead-
ing since these data structures, being in essence a binary
search trees that use randomness to stay balanced, are ac-
tually quite different from inverted lists with skips.

In [3] skips lists are used instead of inverted lists with
skips. The experimental results show a good improvement
with respect to the classic skip placement strategy in terms
of speed and memory occupation. The results do not seem
to be directly comparable with ours however. Besides the es-
sential difference between skip lists and inverted lists already
remarked, compression issues are the main focus of [3]. Also,
the metrics in [3] are not directly comparable since actual
I/O time is used instead of a machine independent notion
of work. No attempt is made to optimize the data structure
with respect to the query distribution. Whether this is at
all possible with skip lists is an interesting open question.

The paper [2] explores techniques other than the merge
to compute list intersection. The setup is quite different
from ours and it does not appear to be directly relevant. In
particular no attempt is made to exploit knowledge of the
query distribution, which is our main concern here.

3. ALGORITHMS
In this section we develop several algorithms to compute a

skip placement that minimizes the expected time to process
a query, assuming that the query distribution is known in
advance. Our results hold for any distribution.

We need some notation. We assume that the dictionary
(i.e. the set of terms) of a given corpus is organized as
an inverted index. That is, each document in the corpus
has a unique ID and the ID’s induce a total ordering. For
each term in the corpus, we have a linked list of the doc-
uments (posting list) containing the term, sorted by ID. In
what follows we will just use the word “document” instead

16

of “document ID”. In the same spirit, we will write d < d′

when d’s ID is less than that of d′.
When processing a conjunctive query there are three kinds

of atomic reads–pointers, skips and ID’s–and they can have
different unit costs. We distinguish between pointers of the
form i → i + 1 and skips like i → j (i + 1 < j) because
the former are sometimes only logical pointers, for instance
when several elements are stored contiguously without ex-
plicit pointers. In what follows for the sake of simplicity
we will charge a unit cost only for ID and skip reads. The
cost of reading a pointer i → i + 1 will be absorbed by the
read i + 1. Our algorithms easily extend to the case when
different constants are charged for the three kinds of read.

A document (whose ID is) d can belong to many lists. We
denote with dt when d belongs to the list of the term t and
refer to this as an occurrence of d in t’s list. For a query q
we will use t ∈ q to denote that the query q contains the
term t. Similarly, we will write t ∈ d and t ∈ dx. If a skip
goes from an element dx to another element ex of x’s list we
will denote the skip as d → e and call tail the former and
head the latter.

The starting point of our analysis is the notion of useful
document. Informally, a document is useful if it cannot be
avoided while processing a query. This intuitive notion is
captured computationally in the following definition.

Definition 1. (Useful documents)

• Let q be a query and let q := x1∧. . .∧xℓ. If a document
i occurs in the posting list of all xi then it is useful for
q (see Figure 2 representing ℓ = 2).

• Let x and y be two terms of a query q. Assume that (a)
i is a document occurring in the posting list of x but not
in that of y; (b) j and k are documents occurring in y’s
list; (c) k < i < j in the global ordering defined among
documents, and (d) the merge procedure is scanning
document i. Then i, j and k are useful for q. (see
Figure 3)

A document is useful if it is useful for some q.

The first clause of the definition refers to the usual notion
of relevance, i.e. a document is relevant if it contains all
terms of a query and it therefore must be returned. The
interesting thing about the definition is that if one restricts
it to relevance, and computes the optimal skip placement
accordingly, the result will be of no use! The reason is that
one must locate document occurrences that can help during
the merge, i.e. those that cannot be skipped.

The notion of usefulness is unambiguous when a query
contains at most two terms, but it depends on the merge
strategy when the terms are more than two. In general, the
merge strategy (i.e. which pointer in which list to advance
first) can depend on the query. Our results hold for any
strategy whatever, provided that the same strategy is used
to generate skips and to answer queries.

The query distribution induces another distribution on
the document occurrences, giving the probability that an
occurrence dt is useful when q is drawn at random. We
shall denote this probability by p(dt). In practice, as we
shall see in the experiment section, given a sample of the
query distribution we can collect statistics to approximate
p(dt) rather efficiently. What we will do is to approximate
the probabilities with their frequencies, in a straightforward

fashion. It would be interesting to investigate more efficient
ways to learn the distribution from the sample.

Henceforth we will assume that p(dt) is known for every
dt. In general, these probabilities are not independent. From
now on, we will make the simplifying assumption that they
are.

Note an important point. The notion of usefulness is un-
ambiguous when a query contains at most two terms, but it
depends on the merge strategy when the terms are more than
two. In general, the merge strategy (i.e. which pointer in
which list to advance first) can depend on the query. Our re-
sults hold for any strategy whatever, provided that the same
strategy is used to generate skips and to answer queries.

dd 10
x x dm

x

dd 10
y y dn

y
y :

i

x :
i

Figure 2: A document that answers a query is useful
(in bold)

dm
x dd 10

x

dnd0
y d1

y
y :

yj<i<k

x :
xi

Figure 3: A document that shows where to skip is
also useful (in bold)

Definition 2. A dictionary is doctored if the last docu-
ment of the list of each and every term contains all terms.

Assuming that a dictionary is doctored introduces an impor-
tant simplification. In a sense it is equivalent to assuming
pessimistically that the list of a term must be scanned in its
entirety, for the last document must be returned for every
query. In the experiments we will see that ignoring this low
order effect is actually beneficial, for it makes the algorithm
waste no time in try to mold the skips in too refined a way.
At the same time, this assumption gives rise to a rich com-
binatorial structure that can be exploited by an algorithm.

3.1 Simple Skips in Doctored Dictionaries
We now develop an algorithm for simple skips in doctored

dictionaries. As we will see, this algorithm is combinatori-
ally the most interesting while at the same time the best
performing. The algorithm will place skips in order to max-
imize the expected number of reads that are avoided (see
Figure 5).

We start with some notation. Let G(i→ j) the expected
gain when placing the skip i→ j. That is,

G(i→ j) := (j− i− 2)

j−1
Y

k=i+1

(1− pk)−

1−
j−1
Y

k=i+1

(1− pk)

!

The first term is the probability that the skip can be done
times the number of reads that are avoided. The second
part is the probability that the skip cannot be done times
the unit cost of reading the skip. In the first case, although
j− i−1 documents are jumped, the algorithm needs to read
the skip i→ j, so that j − i− 2 reads are avoided.

17

If the dictionary was not doctored we would have to add
a third term to G(i→ j) taking into account the possibility
that we stop at position i because none of the subsequent
documents is useful for the query.

In the algorithm to follow we will have to compute G(i→
j). Leaving aside for the moment issues of numerical stabil-
ity, to which we return when discussing the experiments, we
would like to compute this term in constant time. This can
be done by precomputing all products of the form

Qj

k=1
(1−

pk), for all 1 ≤ j ≤ n.
The input to the algorithm is a list t := d1 → . . . → dn

with the probabilities pi := p(di) that document di is useful
for a random query q, given that contains t ∈ q. As re-
marked, we assume these events to be independent. For a
given skip placement, let X be the random variable counting
the number of reads that are avoided when a query contain-
ing the term t is chosen at random. Thus our goal is to
maximize E[X] over all possible simple skip placements.

To develop some intuition we first develop an O(n2) so-
lution by dynamic programming. We then build on top
of this a more efficient O(n log n) algorithm. The algo-
rithm will compute solutions inductively by a forward scan
of the list. The value of optimal solution for the prefix
tk := d1 → . . .→ dk will be denoted by M(k).

Definition 3. Let Hk be the index i that maximizes the
quantity

M(i) + G(i→ k).

If the maximum is realized by several values of i we pick the
largest.

Thus Hk is the head of the rightmost skip in an optimal
placement that is subject to the constraint that a skip must
land in position k.

To compute M(k) we have two choices. Either we place
the skip Hk → k or not. By definition of Hk we have,

M(k) = max{M(k − 1), M(Hk) + G(Hk → k)}.
To actually build a skip placement that realizes M(k) let

Tk :=



0 if M(k) = M(k − 1)

1 otherwise

i.e. Tk = 1 if and only if the skip Hk → k is placed. The
optimal value is given by M(n), while the corresponding skip
placement is given by the two vectors (H1, . . . , Hn) for the
heads and (T1, . . . , Tn) for the tails. We start the process by
setting M(1) = 0, H1 = 1, and T1 = 0. The algorithm takes
n − 1 iterations to compute Hk, M(k) and Tk, 2 ≤ k ≤ n.
While computing the last two takes constant time, we need
O(n) steps to compute Hk. The resulting complexity is thus
O(n2).

We will show that in fact the body of the loop can be
executed in O(log n) time. The basic intuition is that the
Hk’s are monotone, i.e. Hk ≤ Hk+1. This is the key to
determine Hk by binary search. In fact, a more sophisticated
version of the Hk is needed.

Definition 4. Let Hj,k be the index i that maximizes the
quantity

M(i) + G(i→ j).

under the constraint that i ≤ k. If the maximum is realized
by several values of i we pick the largest.

We first develop another O(n2) solution using Hj,k and
then show how it can actually be implemented in O(n log n)
steps. If we are given

• M(1), . . . , M(k − 1) and

• Hj,k−1, for all j, 1 ≤ j ≤ n

we can compute Mk and Hj,k, for all j. To compute M(k),
observe that Hk = Hk,k−1 and thus,

M(k) = max{M(k − 1), M(Hk) + G(Hk → k)}
= max{M(k − 1), M(Hk,k−1) + G(Hk,k−1 → k)}

To compute Hj,k the only question is whether the new head
candidate k is better that the incumbent Hj,k−1. Therefore,
we set Hj,k := k if

M(k) + G(k → j) > M(Hj,k−1) + G(Hj,k−1 → j), (1)

and set Hj,k := Hj,k−1 otherwise.
The resulting algorithm is the following:

• M(1)← 0, Hj,1 ← 1, for j = 1, 2, . . . , n, and T1 ← 0

• for k := 2 to n do

– M(k) ← max{M(k − 1), M(Hk,k−1) + G(Hk,k−1 →
k)}

– if M(k) = M(k − 1) then Tk ← 0 else Tk ← 1

– for j := 1 to n do: if Equation (1) holds then Hj,k ← k
else Hj,k ← Hj,k−1

The time complexity of this algorithm being the same O(n2),
it would seem that we have not made much progress. The
point however is that the inner loop to compute the values
Hj,k can be computed in O(log n) steps! The crux of the
matter is the following theorem.

Theorem 5. ∀j, k Hj,k ≤ Hj+1,k.

Note that Hj,k ≤ Hj,k+1 is trivially true. We shall postpone
the proof of this theorem to the end of the section and use
it to develop the more efficient algorithm.

Let ĵ be the smallest index j such that Equation 1 holds. If
such a j does not exists let ĵ =∞. Thanks to the monotonic-
ity property of Theorem 5, ĵ can be determined in O(log n)
steps by binary search. Again by Theorem 5, observe that

• j < ĵ ⇒ Hj,k = Hj,k−1

• j ≥ ĵ ⇒ Hj,k = k

We can implement the vector (H1,k, . . . , Hj,k, . . . , Hn,k) in
such a way that the update takes O(log n) time. Initially,
(H1,1, . . . , Hj,1, . . . , Hn,1) = (1, . . . , 1, . . . , 1). This situa-
tion can be represented compactly as (1, [1, n]). At step
k the vector will be represented as a sequence of this form
(1, [1, h1]), (i2, [h1 + 1, h2]), . . . (iℓ, [hℓ−1 + 1, hℓ]). The entry
(i, [x, y]) represents the fact that Hj,k = i for every j ∈ [x, y].
To compute the representation for k + 1 we first determine
the entry (is, [xs, ys]) such that ĵ ∈ [xs, ys] by binary search
and then update as follows: (a) each entry before (is, [xs, ys])

stays the same; (b) entry s becomes (is, [xs, ĵ − 1]), and (c)

entry (k, [ĵ, n]) is added after entry s. All remaining old
entries are removed. We shall refer to the procedure just
described for the update of (H1,k, . . . , Hj,k, . . . , Hn,k) as a
concise update.

The following algorithm Simpleton summarizes the dis-
cussion:

18

• M(1)← 0, Hj,1 ← 1, for j = 1, 2, . . . , n, and T1 ← 0

• for k := 2 to n do

– M(k) ← max{M(k − 1), M(Hk,k−1) + G(Hk,k−1 →
k)}

– If M(k) = M(k − 1) then Tk ← 0 else Tk ← 1

– Let ĵ be the smallest index that satisfies Equation (1),

if it exists, or ∞ otherwise. Determine ĵ by binary
search.

– Update Hj,k concisely.

Theorem 6. Algorithm Simpleton computes an optimal
skip placement in time O(n log n) if the dictionary is doc-
tored.

We now turn to the proof of Theorem 5 which will follow
from the next two lemmas.

Definition 7. Let ∆(i, k, j) := G(k → j) − G(i → j),
where i < k < j.

Lemma 8. Let i < k < j. Then,

1. ∆(i, k, j) < 0⇒ ∆(i, k, j + 1) > ∆(i, k, j)

2. ∆(i, k, j) > 0⇒ ∆(i, k, j + 1) > 0

Proof. We start by rewriting G(k → j) in a more con-
venient form. Let

P (i, j) :=

j
Y

t=i

(1− pt).

Then,

G(k → j) =

0

@

j−1
Y

t=k+1

(1 − pt)

1

A (j − k − 2) −

0

@1−

j−1
Y

t=k+1

(1− pt)

1

A

= P (k + 1, j − 1) (j − k − 2)− (1− P (k + 1, j − 1))

= P (k + 1, j − 1)(j − k − 1)− 1

Analogously,

G(i→ j) = P (i + 1, j − 1)(j − i− 1) − 1.

Thus,

∆(i, k, j) = P (k + 1, j − 1)(j − k − 1)− P (i + 1, j − 1)(j − i− 1)

= P (k + 1, j − 1) (j − k − 1− P (i + 1, k)(j − i− 1))

= P (k + 1, j − 1)Q

Where Q := (j − k − 1− P (i + 1, k)(j − i− 1)). Similarly,

∆(i, k, j + 1) = P (k + 1, j)(j − k)− P (i + 1, j)(j − i)

= P (k + 1, j) (j − k − P (i + 1, k)(j − i))

= P (k + 1, j − 1)(1 − pj)Q
′

Where Q′ := (j − k − P (i + 1, k)(j − i)). Note that

Q′ ≥ Q. (2)

Suppose now that ∆(i, k, j) > 0. This implies that Q ≥ 0.
Since Q′ ≥ Q ≥ 0 it follows that ∆(i, k, j + 1) > 0 and the
second part of the claim is proven.

If we assume instead that ∆(i, k, j) < 0 we consider two
cases. Note that the assumption implies that Q < 0. First,
if Q′ ≥ 0 then ∆(i, k, j + 1) > 0 > ∆(i, k, j) and the first
part of the claim follows. Otherwise, Q′ < 0. But then

(1− pj)Q
′ ≥ Q′ ≥ Q

which implies

P (k + 1, j − 1)(1− pj)Q
′ ≥ P (k + 1, j − 1)Q.

And the claim follows again.

Lemma 9. Let i < k < j. If

∆(i, k, j) > M(i) −M(k)

then

M(i) + G(i→ j) 6 M(k) + G(k → z)

for all z ≥ j.

Proof. It is sufficient to prove the lemma for z = j +
1. Let us then rewrite the claim in an equivalent way: if
∆(i, k, j) > Mi − Mk then ∆(i, k, j + 1) > Mi − Mk for
all z ≥ j. Now, clearly M(i) ≤ M(i + 1) and therefore
M(i) −M(k) ≤ 0. There are two cases to consider. The
first is when ∆(i, k, j) < 0. By Lemma 8 we have that
∆(i, k, z) ≥ ∆(i, k, j) ≥M(i)−M(k). And the claim follows.
The other case is when ∆(i, k, j) ≥ 0. Invoking Lemma 8
again we have that ∆(i, k, j + 1) ≥ 0 ≥ M(i) −M(k). The
claim again follows.

From Lemma 9, Theorem 5 follows. The lemma can be
restated as saying that if

M(i) + G(i→ j) ≤M(k) + G(k→ j)

for i < k < j then

M(i) + G(i→ j) 6 M(k) + G(k→ j + 1).

But this implies that if Hjk = k then Hj+1,k = k. Theorem 5
follows.

3.2 Spaghetti skips
In this section we develop an O(n2) algorithm to place

spaghetti skips. A careful analysis shows that the running
time is in fact O(nt) where t is the average length of a skip.
Although O(n2) = O(nt) in the worst case, in practice O(nt)
is much smaller. Note also that the algorithm breaks ties
by choosing the shorter skip between equivalent alternatives
and thus has a tendency to create short skips.

We begin with some notation. Let t : d1 → . . . → dn be
the input list, and let pi be the probability that di is useful.
We will assume that these events are independent. Let

P
t

s =
t
Y

i=s

(1− pi).

This is the probability that none of the documents s, s +

1, . . . , t is useful. And let P t
s = 1−P

t

s. This is the probabil-
ity that at least one of those documents is useful. The algo-
rithm will build optimal solutions scanning t backwards. At
position i the algorithm has already placed skips optimally
for the suffix si+1 := di+1 → . . . → dn. The algorithm will
minimize the expected number of document ID reads.

At position i we have to decide whether to place a skip
or not. Assuming that we already have an optimal solution
for si+1 we denote by Ei→j the expected number of reads if
the skip i → j is placed, and by Ei6→ the expected number
of reads if we place no skip at i. Let

Ei := min{Ei6→, min
i<j≤n

Ei→j} (3)

19

(we include Ei→i+1 for notational simplicity). In case of
equivalent alternatives, the algorithm breaks ties by select-
ing the shortest skip. The recurrence (3) specifies O(n2)
algorithm provided that we can initialize the process and
compute Ei6→ and Ei→j in constant time.

The initialization is En = 1. Then, for all i ∈ {1, . . . , n−
1},

Ei6→ = P n
i+1(1 + Ei+1) + P

n

i+1

To specify Ei→j we consider three mutually exclusive events:
(a) there is a useful document in [i+1, j−1]; (b) no document
in this interval is useful, but there is a useful document after
j; and (c) there is no useful document after i. Then,

Ei→j = P
j−1

i+1
(3 + Ei+1) + P

j−1

i+1 P n
j (3 + Ej) + P

n
i+1

For the case j = i + 1 ≤ n, the previous equation becomes
ill-defined because of P j−1

i+1 . So let us adopt the convention

P i
i+1 = 0.
This ends the description of the O(n2) algorithm. A care-

ful analysis reveals its running time to be O(nt), t being the
average length of a skip. This is what we do next. The key
property is the following. Assume that the skip i → j is in
the optimal solution. Then, for every k < i, the skip k → ℓ
is such that ℓ ≤ j. We call this the no-leapfrog property.
This property implies the O(nt) bound.

First of all, we prove that the sequence {Ei}ni=1 is non-
increasing. Although this is intuitively obvious, a rigorous
verification seems to require some care.

Lemma 10. For all i ∈ {1, . . . , n− 1}, Ei ≥ Ei+1.

Proof. It can be checked directly that En−1 ≥ En. We
want to show that Ei ≥ Ei+1 assuming by induction Ei+1 ≥
Ej , for all j ∈ {i + 1, . . . , n− 1}.

There are two cases to consider. Either Ei = Ei6→ or
Ei = Ei→j for some j > i. Assuming the former, we proceed
by contradiction. If Ei < Ei+1 then we would have Ei6→ <
Ei+16→, or

P n
i+1(1 + Ei+1) + P

n

i+1 < P n
i+2(1 + Ei+2) + P

n

i+2

which is equivalent to

P n
i+1Ei+1 < P n

i+2Ei+2.

But this is impossible because of the inductive property and
P n

i+1 ≥ P n
i+2, which trivially holds.

Assume now Ei = Ei→j . If j = i + 1 the claim Ei→i+1 <
Ei6→ trivially implies a contradiction, so assume j ≥ i + 2.

Let E(i→ j) := Ai+1 + Bj
i+1 + P

n

i+1 where

Ai+1 := P j−1

i+1 (3 + Ei+1)

and

Bj
i+1 := P

j−1

i+1 P n
j (3 + Ej).

If Ei < Ei+1, then Ei→j < Ei+1→j , or

Ai+1 + B
j
i+1

+ P
n

i+1 < Ai+2 + B
j
i+2

+ P
n

i+2

which is equivalent to

Ai+1 − Ai+2 < B
j
i+2
− B

j
i+1

+ P
n
i+2 − P

n
i+1

We want to show that

pi+1P
j−1

i+2 (3 + Ei+1) ≤ Ai+1 − Ai+2

and that

Bj
i+2 −Bj

i+1 + P
n

i+2 − P
n

i+1 < pi+1P
j−1

i+2 (3 + Ej)

From these two inequalities the claim follows since they im-
ply

pi+1P
j−1

i+2 (3 + Ei+1) < pi+1P
j−1

i+2 (3 + Ej).

Now, if pi+1P
j−1

i+2 = 0 we immediately have a contradiction.
Otherwise we equivalently have

(3 + Ei+1) < (3 + Ej)

which is again a contradiction since Ei+1 ≥ Ej by the in-
duction hypothesis. To conclude the proof we verify the
inequalities above. Let p := pi+1, then

Ai+1 − Ai+2 = (1− P
j−1

i+1)(3 + Ei+1)− (1− P
j−1

i+2)(3 + Ei+2)

= Ei+1 − Ei+2 + P
j−1

i+2 ((3 + Ei+2)− (1− p)(3 + Ei+1))

= (1 − P
j−1

i+2)(Ei+1 −Ei+2) + pP
j−1

i+2 (3 + Ei+1)

≥ pP
j−1

i+2 (3 + Ei+1)

where the last inequality follows from the inductive hypoth-
esis Ei+1 ≥ Ei+2. Furthermore,

B
j
i+2
− B

j
i+1

+ P
n

i+2 − P
n

i+1 =

P
j−1

i+2 P n
j (3 + Ej)− P

j−1

i+1 P n
j (3 + Ej) + P

n

i+2 − P
n

i+1

= pP
j−1

i+2 (P n
j (3 + Ej) + P

n

j)

= pP
j−1

i+2 ((1 − P
n

j)(3 + Ej) + P
n

j)

= pP
j−1

i+2 ((3 + Ej)− P
n
j (3 + Ej) + P

n
j)

= pP
j−1

i+2 ((3 + Ej)− P
n
j (2 + Ej))

≤ pP
j−1

i+2 (3 + Ej)

We now prove the no-leapfrog property.

Lemma 11. Let i → k and i + 1 → j be optimal skips of
smallest length. Then, k ≤ j.

Proof. Suppose to the contrary that j < k. Then the
hypotheses are equivalent to Ei→j > Ei→k and Ei+1→j ≤
Ei+1→k.

The first inequality is,

P j−1

i+1 (3 + Ei+1) + P
j−1

i+1 P n
j (3 + Ej) + P i+1,n

> P k−1

i+1 (3 + Ei+1) + P
k−1

i+1 Pk,n(3 + Ek) + P
n

i+1

Equivalently,

P i+1,j−1Pj,n(3 + Ej)− P i+1,k−1Pk,n(3 + Ek)

> (P i+1,j−1 − P i+1,k−1)(3 + Ei+1)

If P i+1,j−1 = 0 we immediately get a contradiction for both
terms becomes zero. Otherwise we factor this term out and
get

M := (3 + Ej) + P j,n(Ek − Ej)− P j,k−1(3 + Ek)

> (1− P j,k−1)(3 + Ei+1).

20

Analogously for the second hypothesis (Ei+1→j ≤ Ei+1→k),
we get

M := (3 + Ej) + P j,n(Ek − Ej)− P j,k−1(3 + Ek)

≤ (1− P j,k−1)(3 + Ei+2).

By combining the inequalities we get

(1− P j,k−1)(3 + Ei+2) ≥M > (1− P j,k−1)(3 + Ei+1)

which is impossible by the non-negativity of all products’
terms and by the inductive hypothesis Ei+1 ≥ Ei+2.

The last lemma implies that the running time of the algo-
rithm is O(nt) where t is the average length of a skip. To see
this, let ti be the length of the skip whose head is position
i. Then, the running time is

O

n
X

i=1

ti

!

= O(nt).

Remark: using the machinery described in this section
we can determine two other algorithms. Algorithm Sim-

ple places simple skips optimally in time O(n2). To derive
it we only need to add to the definition of G(i→ j) a term
that takes into account the possibility that we stop at posi-
tion i, as we did in the derivation of algorithm Spaghetti.
Similarly, we can derive an O(nt) algorithm for spaghetti
skips and doctored dictionaries. We refer to this as algo-
rithm DoctoredSpaghetti. The details of their derivation
would not add much to the discussion in terms of new ideas
and are therefore omitted from this extended abstract.

4. EXPERIMENTAL EVALUATION
We studied the performances of our algorithms on a par-

tial snapshot of 100 thousands pages taken from the .uk do-
main in crawling order, containing about 700MB of parsed
text. This corpus generated 1, 358, 045 many distinct terms.

We used the APIs supplied by Lucene 1.4.3 [6], among
the Apache projects [5], to index the documents on the local
disk.

Even if Lucene is an efficient indexer, a user cannot decide
to arbitrarily place skips on the lists. So we had to modify
Lucene with further new APIs which permit a user to put
skips as required.

Finally, we implemented our algorithms running them on
a Java Virtual Machine 1.5.

When dealing with products of probabilities, to avoid prob-
lems of numerical stability we used the logarithm of the
product.

4.1 Query Data Set and Measures
There is strong experimental evidence that the queries on

a search engine follow a power law with parameters α = 0.74
or α = 1.3 [1]. Initially we used a log of real queries kindly
provided by AlltheWeb.com. Unfortunately this log turned
out to be of very limited value because the greatest major-
ity of the queries had no matches in our document corpus.
Therefore, to assess the efficiency of our methods, we gener-
ated data sets of conjunctive queries chosen at random from
our corpus, following power laws with parameters α = 0.74,
α = 0.9, α = 1.1 and α = 1.3. Each query was composed by
2 terms. In this fashion, for each distribution d, we obtained
a data set Qd.

Note an important point. The fact that queries are gen-
erated independently does not imply that events of the kind
“d is useful for t” are also independent. Thus, our corpus
is a good benchmark to test the influence of the simplifying
independence assumption we made to have a manageable
theoretical analysis.

A distribution d on queries induces a distribution on doc-
uments usefulness. As discussed previously, we approximate
these probabilities by collecting frequencies, using a sample.
To collect the statistics we used the first β|Qd| queries in
Qd as a sample, where β ∈ (0, 1) is the parameter which
determines the sample size β|Qd|. After the statistics were
collected, the experiments were performed on the entire col-
lection Qd.

In the following, we run experiments on five different al-
gorithms:

• Spaghetti is the algorithm in Sect.3.2. This algo-
rithm tries to extract as much information as possible
from the query distribution and optimize as much as
possible. Its running time is O(nt) = O(n2).

• DoctoredSpaghetti is the same as above, for the
special case of doctored dictionaries. Its running time
is O(nt) = O(n2).

• Simple is the algorithm that finds the best placement
for simple skips. Its running time is O(n2).

• Simpleton is the algorithm of Section 3.1, to place
simple skips in doctored dictionaries. Its running time
is O(n log n).

• Finally Sqrt is the canonical way of placing skips on
a list of length ℓ, one every

√
ℓ documents.

Our interest is in the following measures.

1. Space overhead: we counted the number of skips placed
by each algorithm. Results described in Fig. 4.

2. Performances at run-time: we measured the perfor-
mances of query answers on lists with skips w.r.t. lin-
ear scans on the lists.

3. Build Time: the running time needed by our algo-
rithms to place the skips, measured in time units.

4. Sample Size: we also investigated on the minimum
value for the parameter β.

Note that (1), (2) and (4) are machine-independent quanti-
ties. We will describe them in next sections.

4.2 Space
Fig. 4 shows the number of skips placed w.r.t. the skips

placed by Sqrt, as a function of the power law parameter
α used to generate the queries. Thus, data in Fig. 4 is
normalized to 1 for Sqrt. In particular, it depicts the case
in which β = 0.25, the biggest β among our choices.

Each one of our optimal algorithms perform better than
the classical Sqrt. DoctoredSpaghetti goes from 60%
of the skips placed by Sqrt, when α = 0.74, to 90% when
α = 1.3. The same holds for Spaghetti. Simpleton and
Simple come out to be the best solutions here, since they
use about 20% of the space for every value of the power-law
parameter α.

21

 0

 0.2

 0.4

 0.6

 0.8

 1

1.31.10.90.74

Fr
ac

tio
n

of
 th

e
N

um
be

r o
f S

ki
ps

 P
la

ce
d

w
.r.

t.
S

qr
t

Power Law Parameter α

DoctoredSpaghetti

Spaghetti

Simpleton

Simple

Sqrt (interesting lists)

Figure 4: Space as the number of skips added to the
index measured as fraction of those added by Sqrt.
Results for β = 0.25.

But if we restrict our attention solely to the lists of terms
involved in the data set, Sqrt places the minimum number
of skips. These lists are called interesting in Fig. 4. We
can assume however that in the real world, the data set
should approximately contain the entire dictionary. If this is
the case, all the lists become interesting and Sqrt suddenly
becomes the worst possible choice.

4.3 Performance at Run-Time
We use here as a benchmark the index without skips. As

in Sect. 3, we assume the decompression time of both a
document ID and a skip to be equal to 1, i.e. we assume
them to be atomic reads.

Fig. 6 shows the fraction of reads avoided by skips w.r.t.
the overall number of reads in the benchmark, as a function
of the power law parameter α used to create the data set. As
before, the case in which β = 0.25 is shown. Similar results
are obtained for different values of β.

1 2 3 4 5 6 7

y :

1 2 8

x :

Figure 5: Measures of Performance. Bold elements
are touched by a query answer using skips. The skip
permits to avoid 4 reads minus 1 (the skip) instead
of the 10 needed by the benchmark.

As an example, in Fig. 5 the thin documents represents
the reads avoided by the skip, while the bold elements are
the reads made. The benchmark would force 10 reads, while
the skip permits to avoid 4−1 reads, 4 for IDs minus 1 for the
additional skip we pay. Our measure would be (4− 1)/10 =
0, 3, meaning that we perform the 70% of the linear scan
work.

Our experimental results show that our optimal algorithms
are equivalent in terms of performance, and they all perform
better than Sqrt. When α = 0.74 our algorithms avoid the
8% of reads w.r.t. the benchmark, while Sqrt avoids only

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1.31.10.90.74

Fr
ac

tio
n

of
 R

ea
ds

 a
vo

id
ed

 b
y

S
ki

ps

Power Law Parameter α

DoctoredSpaghetti

Spaghetti

Simpleton

Simple

Sqrt

Figure 6: Performances at run-time as the fraction
of reads avoided by skips w.r.t. the overall number
of reads in the benchmark. Results for β = 0.25.

the 5% of reads. When α = 1.3, our algorithms gain 37%
while Sqrt achieves only the 10%.

4.4 Build Time
We used a machine equipped with two processors Dual

Core AMD Opteron(tm) Processor 275, with 2GHz each,
and 6GB of total RAM. In Fig. 7 we report the time needed
by each algorithm to compute the skip placement, where the
sample size is determined by parameter β = 0.25.

 0

 2

 4

 6

 8

 10

1.31.10.90.74

B
ui

ld
 T

im
e

(h
ou

rs
)

Power Law Parameter α

DoctoredSpaghetti

Spaghetti

Simpleton

Simple

Sqrt

Figure 7: Time to compute skip placement. Results
for β = 0.25.

It is worth noting that Simpleton is the fastest algorithm.
It takes only half an hour to place skips, while Doctored-

Spaghetti and Spaghetti need 1 hour and 1.5 hours re-
spectively. Finally Simple needs almost 10 hours to end its
computation. This is evidence that in fact nt < n2.

Not surprisingly, Sqrt is even faster than Simpleton,
even if by a small margin.

4.5 Sample Size
Here we investigate the sample size needed to collect re-

liable enough statistics on document usefulness. That is,

22

we would like to determine the minimum value for β which
makes the sample meaningful.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 1e-04 0.001 0.01 0.1 1

Fr
ac

tio
n

of
 R

ea
ds

 a
vo

id
ed

 b
y

S
ki

ps

Parameter β: sample size (logscale)

β = 4-1

β = 4-4

β = 4-6

Simpleton

Figure 8: Performances of Simpleton as a function

of the sample size (parameter β). Results for β =
0.25.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.001 0.01 0.1 1

Fr
ac

tio
n

of
 R

ea
ds

 a
vo

id
ed

 b
y

S
ki

ps

Parameter β: sample size (logscale)

β = 4-1

β = 4-4

DoctoredSpaghetti

Figure 9: Performances of DoctoredSpaghetti as a

function of the sample size (parameter β). Results
for β = 0.25.

To this aim, we have performed several experiments vary-
ing the value for β. In Fig. 8 and 9 the results for Simpleton

and DoctoredSpaghetti respectively are shown. We tried
β ∈ [4−6, 4−1]. For this reason the x-axis are in logarithmic
scale.

Fig. 8 shows that for Simpleton the value for β must be at
least 4−4. Performance deteriorates for smaller values of β.
On the other hand, Fig. 9 shows that DoctoredSpaghetti

needs β = 4−1. Note, in fact, how DoctoredSpaghetti

performances dramatically collapse with decreasing values
of β.

To summarize, Simpleton needs a sample smaller than
the one needed by DoctoredSpaghetti.

5. CONCLUSIONS
Query distributions contain a lot of useful information

that can be exploited to improve performance. This pa-

per is the first attempt to do so in a systematic and rigorous
way for the important task of answering conjunctive queries.

It is an interesting conclusion that Simpleton is the best
performing algorithm in all respects: time, query process-
ing, space and size of the sample to collects statistics. We
take this to mean that it does not pay off to consider more
refined stochastic models for the problem. In building the
skips, Simpleton implicitly assumes that the end of the list
is always reached, while we know that this is not the case in
practice. Note however that our algorithms Spaghetti and
Simple do take into account that a merge can end before
reaching the end of a list. Our experiments show that Sim-

pleton performs at least as well, and therefore this is an
indication that taking this factor into account has a compu-
tational cost that it is not worth in terms of performance.

Future work could consider larger corpora and try to de-
termine the query processing time for the most popular
queries. Finally, we feel that further significant improve-
ments can be made following the route traced in this paper.
For instance it would be of great interest to see if the ap-
proach extends to the case when data structures are com-
pressed.

Acknowledgements
We would like to thank Prabhakar Raghavan for suggesting
the problem. We also thank the anonymous referees for
many valuable comments.

6. REFERENCES
[1] Ricardo A. Baeza-Yates and Felipe Saint-Jean. A three

level search engine index based in query log
distribution. In String Processing and Information
Retrieval, SPIRE 2003, Proceedings, volume 2857 of
Lecture Notes in Computer Science, pages 56–65.
Springer, 2003.

[2] Jérémy Barbay, Alejandro López-Ortiz, and Tyler Lu.
Faster adaptive set intersections for text searching. In
Experimental Algorithms, WEA 2006, Proceedings,
volume 4007 of Lecture Notes in Computer Science,
pages 146–157. Springer, 2006.

[3] Paolo Boldi and Sebastiano Vigna. Compressed perfect
embedded skip lists for quick inverted-index lookups. In
String Processing and Information Retrieval, SPIRE
2005, Proceedings, volume 3772 of Lecture Notes in
Computer Science, pages 25–28. Springer, 2005.

[4] Ramez Elmasri and Shamkant B. Navathe.
Fundamentals of Database Systems. The
Benjamin/Cummings Publishing Company, Inc., June
1994.

[5] Apache Software Foundation, http://www.apache.org,
2007.

[6] Lucene Home Page,
http://lucene.apache.org/java/docs/index.html,
2007.

[7] Alistair Moffat and Justin Zobel. Self-indexing inverted
files for fast text retrieval. ACM Trans. Inf. Syst.,
14(4):349–379, 1996.

[8] William Pugh. Skip lists: a probabilistic alternative to
balanced trees. Commun. ACM, 33(6):668–676, 1990.

23

