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Abstract. We show that the existence of a quantized controller for a
given Discrete Time Linear Hybrid System (DTLHS) is undecidable.
This is a relevant class of controllers since control software always im-
plements a quantized controller. Furthermore, we investigate the rela-
tionship between dense time modelling and discrete time modelling by
showing that any Rectangular Hybrid Automaton (and thus, any Timed
Automaton) can be modelled as a DTLHS.

1 Introduction

Many embedded systems are software based control systems. A software based
control system consists of two main subsystems: the controller and the plant.
Typically, the plant is a physical system consisting, for example, of mechanical
or electrical devices while the controller consists of control software running on
a microcontroller. In an endless loop, each T seconds (sampling time), the con-
troller, after an Analog-to-Digital (AD) conversion (quantization), reads sensor
outputs from the plant and, possibly after a Digital-to-Analog (DA) conversion,
sends commands to plant actuators. The controller selects commands in order
to guarantee that the closed loop system (that is, the system consisting of both
plant and controller) meets given safety and liveness properties, i.e. system level
specifications.

Formal verification of system level specifications for software based control
systems requires modelling both continuous systems (typically, the plant) as well
as discrete systems (the controller). This is typically done using Hybrid Systems
(e.g., see [3, 2, 11, 14, 9]).

In [15], we presented a constructive necessary condition and a constructive
sufficient condition for the existence of a (quantized sampling) controller for a
software based control system when the plant is modelled using a Discrete Time
Linear Hybrid System (DTLHS).

From [12] we know that the existence of a sampling controller is undecidable
even for relatively simple linear hybrid automata. Considering that, given a
quantization schema (i.e. number of bits used in AD conversion), the number
of quantized sampling controllers is finite and that when using DTLHSs also
the plant is modelled using a discrete model of time, one may be led to think
that the existence of a quantized sampling controller might be decidable. In this
paper we show that this problem is also undecidable.



Furthermore, we investigate the relationship between dense time modelling
and discrete time modelling by showing that the class of Rectangular Hybrid
Automata (RHA) [13] (and thus, the class of Timed Automata (TA) [3, 14]) can
be encoded into the class of DTLHSs.

Our Main Contributions A DTLHS (e.g., see [5, 15] and citations thereof)
is a discrete time hybrid system whose dynamics is defined as a linear predi-
cate, i.e. a boolean combination (without negation) of linear constraints on its
continuous as well as discrete variables. A large class of hybrid systems, includ-
ing mixed-mode analog circuits, can be modelled using DTLHSs. System level
safety as well as liveness specifications may be modelled as sets of states defined
in turn as linear predicates. In our setting, as always in control problems, liveness
constraints define the set of states that any evolution of the closed loop system
should eventually reach (goal states). Our main contributions are the following.

First, we show that the existence of a quantized sampling controller for
DTLHSs, meeting given safety and liveness specifications is undecidable (Sec-
tion 5). We prove such a result by showing that any two-counter machine can be
coded as a DTLHS thereby extending to DTLHSs the proof technique in [12].

Despite that, the non-complete algorithm in [15] usually succeeds in control
software synthesis for meaningful hybrid systems. The main ingredient of our
approach in [15] is to reduce the nondeterminism of a finite state abstraction of
a given DTLHS: in Section 6, we show that also finding the “best” abstraction
(in order to maximize the possibilities of finding a controller) involves to solve
an undecidable problem.

Finally, we show that any RHA can be modelled as a DTLHS (Section 7).
Since a TA is also an RHA, this implies that any TA can be modelled as a
DTLHS. Such an embedding sheds light on how, by exploiting availability of
real valued state and input variables, dense time behaviours can be modelled
using discrete time behaviours.

Related Work TAs [3, 14] are a subset of RHAs [13] which, in turn, are a
subset of Linear Hybrid Automata (LHA) [2, 11]. Undecidability results of the
control synthesis problem for dense as well as discrete time linear hybrid systems
have been presented in [13, 12, 19, 4]. A more general problem is considered in [7],
namely the discrete time control with unknown sampling rate, that is undecid-
able even for TA. Moreover, we note that none of the above papers addresses
the issue of quantized control. In [15], we presented a non-complete algorithm
for DTLHS quantized sampling control synthesis from formal system level spec-
ifications, without addressing the issue of decidability.

Indeed, to the best of our knowledge, no previously published work has ad-
dressed the issue of decidability of existence of a quantized sampling controller
for DTLHSs.

The relationship between dense time models and discrete time models has
been extensively studied in control engineering (e.g., see [6]) with the goal of
approximating dense time dynamics with discrete time ones. Here we present
an exact representation of RHA as DTLHSs thus showing that, as long as real



valued variables are available, interesting dense time behaviors can also be exactly
modelled using a discrete time approach.

2 Background
We denote with [n] the initial segment {1, . . . , n} of the natural numbers. We
denote with X = x1, . . . , xn a finite sequence of distinct variables, that we may
regard, when convenient, as a set. Each variable x ranges on a known (bounded
or unbounded) interval Dx either of the reals (continuous variables) or of the
integers (discrete variables). We denote with DX the set

∏
x∈X Dx. If X = ∅

then DX = {ε}, where ε is an arbitrary constant. Boolean variables are discrete
variables ranging on the set B = {0, 1}. If x is a boolean variable, we write
x̄ for its complement. We denote with Xr (resp. Xd, Xb) the sequence of real
(resp. discrete, boolean) variables in X.

A linear expression L(X) over a sequence of variables X is a linear combina-
tion

∑
i aixi of variables in X with rational coefficients. A linear constraint over

X (or simply a constraint) is an expression of the form L(X) ./ b where L(X)
is a linear expression over X, ./ is one of ≤, ≥, = and b is a rational constant.

Predicates are inductively defined as follows. A constraint C(X) over a se-
quence of variables X is a predicate on X. If A(X) and B(X) are predicates on
X, then (A(X) ∧ B(X)) and (A(X) ∨ B(X)) are predicates on X. Parentheses
may be omitted, assuming usual associativity and precedence rules of logical
operators. A conjunctive predicate is a conjunction of constraints.

Let P (X) be a predicate. A variable x ∈ X is said to be bounded in P if there
exist a, b ∈ Dx such that P (X) implies a ≤ x ≤ b. In such a case, we denote a
with inf(x) and b with sup(x). A predicate P is bounded if all its variables are
bounded. Let a be a rational number and x be a bounded variable. We write
sup(ax) (resp. inf(ax)) for a sup(x) (resp. a inf(x)) if a ≥ 0 and for a inf(x)
(resp. a sup(x)) if a < 0. We write sup(L(X)) for

∑n
i=1 sup(aixi) and inf(L(X))

for
∑n

i=1 inf(aixi).
A valuation over a sequence of variables X is a function v that maps each

variable x ∈ X to a value v(x) in Dx. We also call valuation the sequence of
values X∗ = v(x1), . . . , v(xn). A satisfying assignment to a predicate P over
X is a valuation X∗ such that P (X∗) holds. Two predicates P and Q over
X are equivalent if they have the same set of satisfying assignments. They are
equisatisfiable, if P is satisfiable if and only if Q is satisfiable.

Given a constraint C(X) and a fresh boolean variable y 6∈ X, the guarded
constraint y → C(X) (if y then C(X)) denotes the predicate ((y = 0) ∨ C(X)).
Similarly, we use ȳ → C(X) to denote the predicate ((y = 1)∨C(X)). A guarded
predicate is a conjunction of either constraints or guarded constraints. A bounded
guarded predicate can be transformed into a conjunctive predicate, by observing
that a guarded constraint z → (L(X) ≤ b) (resp. z̄ → (L(X) ≤ b)) is equivalent
to the constraint (sup(L(X))−b)z+L(X) ≤ sup(L(X)) (resp. (b−sup(L(X)))z+
L(X) ≤ b). Therefore, the following proposition holds.

Proposition 1. For each bounded guarded predicate P (X), there exists an equiv-
alent conjunctive predicate Q(X).



3 Labeled Transition Systems
In this section we define the reachability and the control problem for Labeled
Transition Systems (LTSs), by extending to possibly infinite LTSs the definitions
in [18, 8] for finite LTSs.

An LTS S is a tuple (S,A, T ) where S is a possibly infinite (even possibly
uncountable) set of states, A is a possibly infinite (even possibly uncountable)
set of actions, and T : S × A × S → B is the transition relation of S. Given a
state s ∈ S and an action a ∈ A, we denote with Adm(S, s) the set of actions
admissible in s, that is Adm(S, s) = {a ∈ A | ∃s′T (s, a, s′)} and with Img(S, s, a)
the set of next states from s via a, that is Img(S, s, a) = {s′ ∈ S | T (s, a, s′)}.
S is said to be deterministic if, for all s ∈ S, a ∈ A, |Img(S, s, a)| ≤ 1. We call
self-loop a transition of the form T (s, a, s).

Given two LTSs S1 = (S1, A1, T1) and S2 = (S2, A2, T2), we say that
S1 and S2 are isomorphic, notation S1 ' S2, if there exist two bijective maps
fS : S1 → S2 and fA : A1 → A2 such that for all s ∈ S1, for all a ∈ A1 T1(s, a, s′)
holds if and only if T2(fS(s), fA(a), fS(s′)) holds.

Given two LTSs S1 = (S, A, T1) and S2 = (S, A, T2), we say that S1 refines
S2 (notation S1 v S2) iff T1(s, a, s′) implies T2(s, a, s′) for each state s, s′ ∈ S
and action a ∈ A. The refinement relation is a partial order on LTSs. Informally
speaking, the LTS S1 refines the LTS S2 if the set of transitions of S1 is a subset
of the set of transitions of S2.

A run or path for an LTS S is a sequence π = s0, a0, s1, a1, s2, a2, . . . of states
st and actions at s. t. ∀t ≥ 0 T (st, at, st+1). The length |π| of a finite run is the
number of actions in π. The t-th state element of π is denoted by π(S)(t), and
π(A)(t) denotes the t-th action element of π, that is π(S)(t)=st, and π(A)(t)=at.

Definition 1. A reachability problem is a triple (S, I, G), where S is an LTS
(S,A, T ), and I,G ⊆ S. G is reachable from I if there exists a run π of S such
that π(S)(0) ∈ I and π(S)(t) ∈ G for some t ∈ N.

3.1 LTS Control Problem
A controller for an LTS S is used to restrict the dynamics of S so that all states
in the initial region will reach in one or more steps the goal region. A strong
controller ensures that the closed loop system meets liveness specifications under
a pessimistic view of nondeterminism (worst case distance Js defined below),
whereas a weak controller assumes an optimistic view of nondetermism (best
case distance Jw defined below). In the following, we formalize such concepts by
defining strong and weak solutions to an LTS control problem. In what follows,
let S = (S,A, T ) be an LTS, I, G ⊆ S be, respectively, the initial and goal
regions of S.

Definition 2. A controller for S is a function K : S×A→ B such that ∀s ∈ S,
∀a ∈ A, if K(s, a) then ∃s′ T (s, a, s′). The domain of K is the set dom(K) of
all states for which at least a control action is enabled. Formally, dom(K) =
{s ∈ S | ∃a K(s, a)}.
S(K) denotes the closed loop system, that is the LTS (S,A, T (K)), where

T (K)(s, a, s′) = T (s, a, s′) ∧K(s, a).



We call a path π fullpath if either it is infinite or its last state π(S)(|π|) has no
successors (i.e. Adm(S, π(S)(|π|)) = ∅). We denote with Path(s, a) the set of
fullpaths starting in state s with action a, i.e. the set of fullpaths π such that
π(S)(0) = s and π(A)(0) = a.

Given a path π in S, we define j(S, π,G) as follows. If there exists n > 0
such that π(S)(n) ∈ G, then j(S, π,G) = min{n | n > 0 ∧ π(S)(n) ∈ G}.
Otherwise, j(S, π,G) = +∞. We require n > 0 since our systems are non-
terminating and each controllable state (including a goal state) must have a
path of positive length to a goal state. Taking sup∅ = +∞ and inf ∅ = +∞,
the worst case distance (pessimistic view) of a state s from the goal region
G is Js(S, G, s) = sup{js(S, G, s, a) | a ∈ Adm(S, s)}, where js(S, G, s, a) =
sup{j(S, G, π) | π ∈ Path(s, a)}. The best case distance (optimistic view) of
a state s from the goal region G is Jw(S, G, s) = sup{jw(S, G, s, a) | a ∈
Adm(S, s)}, where jw(S, G, s, a) = inf{j(S, G, π) | π ∈ Path(s, a)}.
Definition 3. A control problem for S is a triple P = (S, I, G). A strong (resp.
weak) solution to P is a controller K for S, such that I ⊆ dom(K) and for all
s ∈ dom(K), Js(S(K), G, s) (resp. Jw(S(K), G, s)) is finite.
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Fig. 1. The LTS S1 in Example 1.

0

0,1

��

0

33

1

��

1

1ss

0

33

0,1

��

2

0,1ss 0 ++

0

��

1

PP
3

0,1

kk

1

��

1

��

0oo

−1

0,1

PP

0

KK

1

33 −2
0ss

0

PP
5

0

33

0

PP
4

0

KK

1ss

0,1

PP

Fig. 2. The LTS S2 in Example 1.

Example 1. Let S1 = (S1, A1, T1) be the LTS in Fig. 1 and let S2 = (S2, A2, T2)
be the LTS in Fig. 2. S1 is the integer interval [−1, 2] and S2 = [−2, 5]. A1 =
A2 = {0, 1} and the transition relations T1 and T2 are defined by all continuous
arrows in the pictures (dotted arrows will be considered later in Example 4). Let
I1 = S1, I2 = S2 and let G = {0}.

There is no strong solution to the control problem (S1, I1, G). Because of the
self-loops of the state 1, we have that both js(S1, G, 1, 0) = +∞ and js(S1, G, 1, 1)
= +∞. On the other hand, the controller K1, defined by K1(s, a) ≡ a = 0, that
enables action 0 in all states, is a weak solution.

The controller K2, defined by K2(s, a) ≡ ((s = 2 ∨ s = 1) ∧ a = 1) ∨ (s 6=
1 ∧ s 6= 2 ∧ a = 0) is a the most general optimal strong solution to the control
problem (S2, I2, G).

We end this section, by recalling a well-known result that relates strong and
weak solutions that will be useful in the sequel.

Proposition 2. Let (S, I, G) be a control problem. Then each strong solution
is also a weak solution. If S is deterministic, then each weak solution is also a
strong solution.



4 Discrete Time Linear Hybrid Systems
Discrete Time Linear Hybrid Sytems (DTLHSs) can effectively model linear
algebraic constraints involving both continuous as well as discrete variables.
Many embedded control systems can be modeled as DTLHSs. As an example,
in [15] it is provided a DTLHS model of a buck DC-DC converter, i.e. a mixed-
mode analog circuit that converts the DC input voltage to a desired DC output
voltage. The dynamics of a DTLHS is given in terms of a suitable LTS.

Definition 4. A DTLHS H is a tuple (X, U, Y, N) where:
X = Xr ∪ Xd is a finite sequence of real (Xr) and discrete (Xd) present

state variables. We denote with X ′ the sequence of next state variables obtained
by decorating with ′ all variables in X.

U = Ur ∪Ud is a finite sequence of input variables, that models controllable
inputs.

Y = Y r ∪ Y d is a finite sequence of auxiliary variables. Auxiliary variables
are typically used to model modes (e.g., from switching elements such as diodes)
or uncontrollable inputs (e.g., disturbances).

N(X,U, Y,X ′) is a predicate over X ∪ U ∪ Y ∪ X ′ defining the transition
relation (next state) of the system.
H is bounded if N is a bounded predicate. It is conjunctive if N is a conjunctive
predicate. It is deterministic iff N(x, u, y, x′) ∧N(x, u, ỹ, x̃′) implies x′ = x̃′.

Definition 5. Let H = (X,U, Y,N) be a DTLHS. The dynamics of H is defined
by the labeled transition system LTS(H) = (DX , DU , N̄) where: N̄ : DX × DU ×
DX → B is a function s.t. N̄(x, u, x′) = ∃ y ∈ DY N(x, u, y, x′). A state x for
H is a state x for LTS(H) and a path for H is a path for LTS(H).

4.1 DTLHS Reachability and Control Problem

Definition 6. Let H = (X,U, Y,N) be a DTLHS and let I and G be linear
predicates over X. The DTLHS reachability problem R = (H, I, G) is defined
as the LTS reachability problem (LTS(H), I, G).

Similarly, the DTLHS control problem (H, I, G) is defined as the LTS control
problem (LTS(H), I, G).

Example 2. Let T be the positive constant 1/10 (sampling time). We define the
DTLHS H = ({x}, {u}, ∅, N) where x is a continuous variable, u is a boolean
variable, and N(x, u, x′) ≡ [u→ x′ = x+ (5/4−x)T ]∧ [u→ x′ = x+ (x− 7/4)T ].
Finally, let I(x) ≡ −1 ≤ x ≤ 5/2 and G(x) ≡ 0 ≤ x ≤ 1/2.

Let us consider the control problem P = (H, I, G). A controller may drive
the system into the goal G, by enabling a suitable action in such a way that
x′ < x when x > 1/2 and x′ > x when x < 0. Indeed, the controller: K(x, u) =
(−1 ≤ x < 0 ∧ u) ∨ (0 ≤ x < 2 ∧ u) ∨ (1 ≤ x ≤ 5/2 ∧ u) is a weak
solution to P . K is not a strong controller, because it allows infinite paths to be
executed. For example, K enables the action u = 0 in the state x = 5/4. Since
N(5/4, 0, 5/4) holds, the closed loop system H(K) may loop forever along the path
5/4, 0, 5/4, 0 . . ..



A strong controller K ′ for H is K ′(x, u) = (−1 ≤ x < 0 ∧ u) ∨ (0 ≤ x <
3/2 ∧ u) ∨ (3/2 ≤ x ≤ 5/2 ∧ u).

4.2 Quantized Control Problem

In order to manage real variables, in classical control theory the concept of
quantization is introduced (e.g., see [10]). Quantization is the process of approx-
imating a continuous interval by a set of integer values. A quantized feedback
control system uses two converters to translate continuous variables into dis-
crete variables (AD converter) and vice versa (DA converter). In the following
we formally define a quantized feedback control problem for DTLHSs.

A quantization function γ : R 7→ Z is a non-decreasing function, such that for
any bounded interval I = [a, b] ⊂ R, γ(I) is a bounded integer interval. We will
denote γ(I) as Î = [γ(a), γ(b)]. For ease of notation, we extend quantizations to
integer intervals, by stipulating that in such a case the quantization function is
the identity function.

Definition 7. Let H = (X,U, Y,N) be a DTLHS, and let W = X ∪ U ∪ Y . A
quantization Q for H is a pair (A, Γ ), where:
A is a predicate over W that explicitely bounds each variable in W . For each

w ∈ W Aw = {w∗ | ∃w1, . . . , wnA(w1, . . . , w
∗, . . . , wn)} denotes the admissible

region of w, and AW =
∏

w∈W Aw denotes the admissible region of Γ .
Γ is a set of maps {γw | w ∈W and γw is a quantization function }.

Let W = [w1, . . . wk] and v = [v1, . . . vk] ∈ AW . We write Γ (v) for the tuple
[γw1

(v1), . . . γwk
(vk)].

A control problem admits a quantized solution if control decisions can be made
by just looking at quantized values. This enables a software implementation for
a controller.
Definition 8. Let H = (X,U, Y,N) be a DTLHS, Q = (A, Γ ) be a quantization
for H and P = (H, I, G) be a DTLHS control problem. A Q Quantized Feedback
Control (QFC) strong (resp. weak) solution to P is a

strong (resp. weak) solution K(x, u) to P such that K(x, u)=K̂(Γ (x), Γ (u))
where

K̂ : Γ (AX)× Γ (AU )→B.

Example 3. Let P, K and K ′ be as in Example 2. Let us consider the quantiza-
tions Q1 = (A1, Γ1), where A1 = I, Γ1 = {γx} and γx(x) = bxc. The set Γ1(Ax)
of quantized states is the integer interval [−1, 2]. Let K̂(s, a) = (a = 0 ∧ s 6=
0) ∨ (a = 1 ∧ s ∈ {0, 1}). The controller K ′′(x, u) = K̂(Γ1(x), Γ1(u)) is exactly
K, and therefore it is a QFC weak solution to P.

No Q QFC strong solution can exist, because in state 1 either enabling action
1 or action 0 allows infinite loops to be potentially executed in the closed loop
system.

The strong controller K ′ in Example 2 can be obtained as a quantized con-
troller decreasing the quantization step, for example, by considering the quanti-
zation Q2 = (A2, Γ2), where A2 = A1, Γ2 = {γ̃x} and γ̃x(x) = b2xc.



5 Quantized Feedback Control Problem Undecidability
In this section we prove the undecidability of the DTLHS quantized feedback
control problem. Along the same lines of similar undecidability proofs [13, 12],
we first show that a two-counter machine M can be encoded as a deterministic
DTLHSHM without controllable inputs in such a way thatM halts if and only if
HM reaches a goal region. This immediately implies that DTLHS reachability is
undecidable. Since HM has no controllable inputs, existence of a weak controller
is equivalent to a reachability problem. For the same reason, actions enabled
by any controller for HM do not depend on state variables. As a consequence,
a quantized weak control problem is equivalent to a DTLHS control problem.
Finally, by Proposition 2, weak solutions to deterministic LTS control problems
are also strong solutions. Therefore, since HM is deterministic, the quantized
strong control problem for DTLHS is undecidable, too.

Two-Counter Machines. A two-counter machine [16]M consists of two coun-
ters that store unbounded natural numbers and a finite control that is a finite
sequence of statements 〈1 : stmt1, . . . , n : stmtn〉, where stmt ::= inc i k | dec i k
| beq i k | halt, with i ∈ {0, 1}. Computations start from the statement labeled 1.
The execution of j : inc i k increments the counter i and then jumps to the state-
ment labeled k. Similarly, the execution of j : dec i k decrements the counter i
(leaving it unchanged if it is 0) and then jumps to the statement labeled k. If the
counter i is 0, the execution of j : beq i k causes a jump to the statement labeled
k. Otherwise, the statement labeled j + 1 will be executed. Finally, the execu-
tion stops if a halt statement is executed. The halting problem for two-counter
machine is undecidable [16].
Lemma 1. For any two-counter machine M , there exists a bounded, conjunc-
tive, and deterministic DTLHS HM , and two predicates I and G such that M
halts if and only if G is reachable from I in HM .

Proof. Let M be a two-counter machine and let HM be the DTLHS (X, U , Y ,
N), where Xr = {x0, x1}, Xd = {l, g}, and U = Y = ∅. Since we are dealing
with bounded DTLHSs, we use two real variables x0 and x1 to encode values
stored in counters. Each natural number m is encoded by the rational number
1/2m. Variables xi are both bounded by the predicate 0 ≤ xi ≤ 1. A discrete
variable l stores the label of the statement currently under execution and it is
bounded by 0 ≤ l ≤ n, where n is the number of statements in the finite control
of M . Finally, the boolean variable g encodes termination of the computation
of M . The transition relation N encodes the execution of the control program.
Let U(X) be the predicate

∧
x∈X x′ = x. A program 〈1 : stmt1, . . . , n : stmtn〉

is encoded by the predicate N =
∧n

j=1Jj : stmtjK, where:

Jj : dec i kK ≡ (l 6= j) ∨ (((xi = 1) ∨ (x′i = 2xi)) ∧
∧ ((xi 6= 1) ∨ (x′i = 1)) ∧ (l′ = k) ∧ U(x1−i, g))

Jj : inc i kK ≡ (l 6= j) ∨ ((x′i = xi/2) ∧ (l′ = k) ∧ U(x1−i, g))
Jj : beq i kK ≡ (l 6= j) ∨ (((xi 6= 1) ∨ (l′ = k)) ∧

∧ ((xi = 1) ∨ (l′ = l + 1)) ∧ U(x1−i, g))
Jj : haltK ≡ (l 6= j) ∨ ((l′ = j) ∧ (g′ = 1) ∧ U(x0, x1))



We observe that we use negation as syntactic sugar to improve readability. In-
deed, since xi can assume only values of the form 1/2m for some m ∈ N, the
condition xi 6= 1 can be replaced by the constraint xi ≤ 1/2. Moreover, since
l is a discrete variable, the condition l 6= j can be replaced by the predicate
(l ≤ j − 1) ∨ (l ≥ j + 1).

It is possible to check thatN({l, 1/2m, 1/2p, g}, ε, {l′, 1/2m′
, 1/2p

′
, g′}) if and only

if after executing the statement labeled l with m and p as counter values,M will
execute the statement labeled l′ with m′ and p′ as counter values. Moreover if
g = 0, g′ will be 1 if and only if the statement labeled l is a halt statement.

Let I be the predicate l = 1 ∧ g = 0 and G be the predicate g = 1. G is
reachable from I in HM if and only if the computation of M terminates.

Finally, we show that N can be written as a conjunctive predicate. Any
predicate P (X) can be written as an equivalent DNF

∨q
i=1

∧mi

j=1 Cij(X), where
Cij(X) are constraints. By introducing q fresh boolean auxiliary variables z1,
. . . , zq this is equisatisfiable to

∧q
i=1(zi →

∧mi

j=1 Cij(X)) ∧
∑q

i=1 zi ≥ 1, which
in turn is equivalent to

∧q
i=1

∧mi

j=1(zi → Cij(X)) ∧
∑q

i=1 zi ≥ 1. Since N is
bounded, by Proposition 1 this can be transformed into a conjunctive predicate.

For example we have:

Jj : haltK ≡ (zj,1 → (l ≥ j + 1)) ∧ (zj,2 → (l ≤ j − 1)) ∧ (zj,3 → (l′ = j))∧
∧ (zj,3 → (g′ = 1)) ∧ (zj,3 → (x′0 = x0)) ∧ (zj,3 → (x′1 = x1)) ∧

∑3
i=1 zj,i ≥ 1

An immediate consequence of Lemma 1 is the undecidability of the DTLHS
reachability problem.

Theorem 1. The reachability problem for bounded and conjunctive DTLHSs is
undecidable.

Theorem 2. Existence of strong and weak solutions to a control problem for a
bounded and conjunctive DTLHS is undecidable.
Proof. For any two-counter machine M , the DTLHS HM has no controllable
actions. Let K be the controller that enables all actions, i.e. such that ∀x ∈ DX

K(x, ε) holds. K is a weak solution to the control problem (HM , I, G) if and
only if G is reachable from I (observe that states in G are controlled by K).
Moreover, since the transition relation of HM is deterministic, by Proposition 2,
K is a weak solution to (HM , I, G) if and only if it is a strong solution.

Theorem 3. Existence of QFC strong and weak solutions to a DTLHS control
problem is undecidable.
Proof. The controller K considered in the proof of Theorem 2 is a quantized
controller. Indeed, for any quantization Q = (A,Γ ), let K̂ be defined by ∀s ∈
Γ (AX) K̂(s, ε). We have that K(x, ε) = K̂(Γ (x), ε).

6 Abstraction Based Control Synthesis
A typical approach to the automatic synthesis of controllers consists of building
a suitable finite state abstraction Ĥ of a hybrid system H, computing an abstrac-
tion Î (resp. Ĝ) of the initial (resp. goal) region I (resp. G) so that any solution



to the LTS control problem (Ĥ, Î, Ĝ) is a finite representation of a solution to
(H, I, G). For example, this can be done by giving conditions ensuring that the
abstract system satisfies some equivalence relation with respect to the concrete
system (e.g. see [17] or [1]).

In our approach, the abstraction induced by a quantization is a design con-
straint rather than a methodological tool, since it depends on the number of bits
used by AD/DA conversions. In [15], we give a constructive sufficient condition
ensuring that the controller computed for Ĥ is indeed a quantized controller
for H. Such a condition stems from the notion of control abstraction. Control
abstractions form a family of abstractions induced by a given quantization.

In this section, we show that finding the “best” control abstraction (in order
to maximize the possibilities of finding a solution to the original control problem)
is also undecidable.

We start by briefly summarizing some definitions and results of [15].

Definition 9. Let H = (X,U, Y,N) be a DTLHS and Q = (A, Γ ) be a quanti-
zation for H.

An action u ∈ AU is A-admissible in x ∈ AX if for all x′, (∃y ∈ AY :
N(x, u, y, x′)) implies x′ ∈ AX .

An action a ∈ Γ (AU ) is Q-admissible in s ∈ Γ (AX) if for all x ∈ Γ−1(s),
u ∈ Γ−1(a), u is A-admissible for x in H.

The Q-abstraction of H is the LTS Ĥ = (S,A, T ) such that Γ (AX) = S,
Γ (AU ) = A, and for all s, s′ ∈ S, a ∈ A we have T (s, a, s′) iff there exists
x ∈ Γ−1(s), x′ ∈ Γ−1(s′), u ∈ Γ−1(a), y ∈ Dy such that N(x, u, y, x′) and a is
Q-admissible in s.

The Q abstraction could be a highly non-deterministic LTS, thus making
problematic the existence of a strong solution to the (abstract) control prob-
lem. In particular, for small values of the sampling time, the Q-abstraction may
contain a large number of self-loops.

Example 4. Let H be the DTLHS of Example 2, and let Q1 = (A1, Γ1) and
Q2 = (A2, Γ2) be quantizations in Example 3. Then, the Q1-abstraction of H
is the LTS S ′1, obtained from the LTS S1 in Example 1, by adding all dotted
self-loops in Fig. 1. The Q2-abstraction of H is the LTS S ′2, obtained from the
LTS S2 in Example 1, by adding all dotted self-loops in Fig. 2.

Let I1, I2, and G as in Example 1. Because of self-loop nondeterminism, no
strong solution exists for control problems (S ′1, I1, G) and (S ′2, I2, G).

On the other hand, if by repeatedly performing an action a in an abstract
state s, it is guaranteed that the system will leave the region represented by s
after a finite number of steps, a self–loop T (s, a, s) can be eliminated and the
action a can be enabled by a strong controller in state s.

Definition 10. Let H = (X,U, Y,N) be a DTLHS, and let Ĥ = (S,A, T ) be its
Q-abstraction.

A self–loop T (s, a, s) is non-eliminable if there exists at least an infinite run
π = x0u0x1u1x2 . . . in H such that ∀t ∈ N xt ∈ Γ−1(ŝ) and at ∈ Γ−1(â).



Otherwise, a self-loop T (s, a, s) not satisfying the above property is said to be
an eliminable self loop.

Definition 11. Given the Q-abstraction Ĥ of H, we call Q-control abstraction
any refinement C v Ĥ that omits some eliminable self–loops.

The following theorem [15] states that it is correct to consider control ab-
stractions when looking for a QFC strong solution to a DTLHS control problem.

Theorem 4. Let H = (X,U, Y,N) be a DTLHS, Q = (A, Γ ) be a quantizantion
and let the LTS Ĥ be a Q control abstraction of H. If I ⊆ Γ−1(Î) and G ⊇
Γ−1(Ĝ), then a strong solution K̂ to the control problem (Ĥ, Î, Ĝ) is a quantized
solution to (H, I, G).

Since self–loop nondeterminism is an obstruction in finding a strong solution
to an LTS control problem, and the set of control abstractions is a finite lattice
with respect to the refinement relation v, it would be convenient considering
the minimum control abstraction when looking for a quantized strong solution
to a DTLHS control problem.

Theorem 5. Finding the minimum control abstraction is undecidable.
Proof. We will show that it is undecidable to state if a self–loop is non-eliminable.

Let M be a two-counter machine. We encode M in a DTLHS HM = (X, U ,
Y , N), where Xr = {x0, x1, l}, Xd = {g}, and U = Y = ∅. N = (

∨n
j=1 l =

j) ∧ (
∨n

j=1 l
′ = j) ∧

∧n
j=1Jj : stmtjK, where Jj : stmtjK is defined as in the proof

of Lemma 1.
Let Q = (A,Γ ) be the quantization defined as follows: Ax0

= Ax1
= [0, 1],

Al = [1, n], Ag = B = {0, 1}, AU = {0}, γx0(x) = γx1(x) = γl(x) = 1. Note that
we have only two abstract states: 〈x̂0, x̂1, l̂, g〉 = 〈1, 1, 1, 0〉 and 〈x̂0, x̂1, l̂, g〉 =
〈1, 1, 1, 1〉. Then, the self–loop (〈1, 1, 1, 0〉, 0, 〈1, 1, 1, 0〉) is non-eliminable iff there
exists an infinite run on M . Being the latter an undecidable problem, we cannot
decide if a self–loop is eliminable or non-eliminable.

Example 5. Let us consider again the DTLHS H, and the quantizations Q1

and Q2 in Example 4. The LTS S1 (resp. S2) in Example 1 is the minimal Q1

(resp. Q2) control abstractions of H, where all eliminable self-loops have been
eliminated.

Self loops T (1, 0, 1) and T (1, 1, 1) in S1 are not eliminable because of the
infinite paths 5/4, 0, 5/4, 0, 5/4 . . . and 7/4, 1, 7/4, 1, 7/4 . . .. The same concrete paths
make abstract self-loops T (2, 0, 2) and T (3, 1, 3) not eliminable in S2.

7 Dense Time Rectangular Hybrid Automata as DTLHSs

In this section we show that DTLHSs are expressive enough to faithfully encode
a relevant class of dense time hybrid systems, namely Rectangular Hybrid Au-
tomata (RHA) [13], a proper superclass of Timed Automata [3]. More precisely,
we show that for every RHA A there exists a DTLHS HA that has the same
dynamics, i.e. such that LTS(HA) ' LTS(A) (Theorem 6). As a byproduct of
this encoding, we obtain alternative proofs of Theorems 1 and 2.



Rectangular Hybrid Automata. We define RHA following the presentation
in [13]. Given a positive n > 0, a subset of Rn is called a region. A closed
and bounded region is called a compact. A region R ⊆ Rn is rectangular if it
is a cartesian product of (possibly unbounded) intervals (finite endpoints are
rationals). We write Ri for the projection of R on the i-th coordinate, so that
R =

∏
i∈[n]Ri. The set of rectangular regions in Rn is denoted by Rn.

An n-dimensional RHA A consists of a finite directed multigraph (V,E), a
finite observation alphabet Σ, three vertex labeling functions init : V → Rn,
inv : V → Rn, and flow : V → Rn, and four edge labeling functions pre : E →
Rn, post : E → Rn, jump : E → P([n]), and obs : E → Σ. The set V of vertices
is the set of control modes, and the set E of edges is the set of control switches.

A variable xi is bounded if for every control mode v, the region inv(v)i is a
bounded interval. A variable xi is monotone if for every control mode v, either
flow(v)i ⊂ R<0 or flow(v)i ⊂ R>0. A variable xi is closed if for every con-
trol mode and every control switch e, the intervals inv(v)i, flow(v)i, init(v)i,
pre(e)i, and post(e)i are closed intervals. A rectangular automata is bounded
(resp. monotone, closed) if all its variables are bounded (resp. monotone, closed).

The rectangular automaton A defines a labeled transition system LTS(A) =
(S,A, T ), where:

States: The set of states S is V × Rn. Each subset Z ⊆ S is called a zone of
A. A state (v, x) is an initial state of A if x ∈ init(v). The initial zone of A,
denoted by Init(A), is the set of all initial states of A.

Actions: The set of actions A is Σ ∪ R+. Each transition labeled with a ∈ Σ
corresponds to a jump step, whose observation is a. Each transition labeled
with t ∈ R+ corresponds to a flow step, whose duration is t ≥ 0.

Transition Relation: The transition relation T is defined by jump and flow
transitions as follows. For each edge e = (v, w) of A, T e((v, x), a, (w, y))
holds iff x ∈ pre(e), y ∈ post(e), for every i 6∈ jump(e) we have xi = yi, and
a = obs(e). For all t ∈ R+, T flow((v, x), t, (v, y)) holds iff either t = 0 and
x = y or t > 0 and (y − x)/t ∈ flow(v). Finally, the transition relation T of
A is

⋃
e∈E T

e ∪ T flow.

We observe that, thanks to convexity of rectangular regions, we have that a flow
transition T flow((v, x), t, (v, y)) can be performed if and only if there exists a
smooth function f : [0, t] → inv(v) with first derivative f ′ such that f(0) = x,
f(t) = y, and for all s ∈ (0, t) f ′(s) ∈ flow(v). In the following, for the sake of
readability, we consider the case Σ = E and obs(e) = e.

Theorem 6. For any closed RHA A there exists a DTLHS HA such that LTS(A)
' LTS(HA).

Proof. Let A be a closed n dimensional RHA. First, we define a DTLHS HA
that encodes A. Let V be the set of m vertices, and E be the set of l edges of
A. Let | · |V : V → [m] and | · |E : E → [l] be two encoding functions of the set of
vertices and the set of edges into initial segments of natural numbers. Since both
vertex and edge labeling functions define rectangular regions, they can be easily



represented as conjunctive predicates. Let inv(v) =
∏

i∈[n][αv,i, αv,i], init(v) =∏
i∈[n][βv,i

, βv,i], pre(e) =
∏

i∈[n][βv,i
, βv,i], and post(e) =

∏
i∈[n][αe,i, αe,i]. We

define the following predicates:

invv(x) ≡
∧

i∈[n] αv,i ≤ xi ≤ αv,i initv(x) ≡
∧

i∈[n] βv,i
≤ xi ≤ βv,i

pree(x) ≡
∧

i∈[n] αe,i ≤ xi ≤ αe,i poste(x) ≡
∧

i∈[n] βe,i
≤ x′i ≤ βe,i

The DTLHS HA = (X,U, Y,N) is defined as follows:

State Variables: The set of present state variables is X=Xr ∪Xd, where Xr

= {x1, . . . , xn} and Xd = {q}. Each xi encodes one continuous variable of A,
and q encodes the set of vertices V of A. Continuous variables are bounded
by invv (see the definition of N below), and q ranges over [m].

Input Variables: The set of input variable is U=Ur∪Ud, where Ur = {t} and
Ud = {r}. The variable t ≥ 0 encodes flow transition durations. The variable
r ∈ {0, . . . , l} encodes the edge taken in a jump transition. The variable r
assumes the value 0 when a flow transition is taken.

Transition Relation: The transition relation predicate N is defined as fol-
lows. Let flow(v) =

∏
i∈[n][γv,i, γe,i]. For each vertex v ∈ V , we define the

predicate flowv as follows:

flowv(q, x, t, q′, x′) ≡ invv(x′) ∧ q′ = q ∧
∧

i∈[n] xi + γ
v,i
t ≤ x′i ≤ xi + γv,it

For each edge e = (v, w) ∈ E, we define the predicate jumpe as follows:

jumpe(q, x, q
′, x′) ≡ q = |v|V ∧ q′ = |w|V ∧ pree(x) ∧ poste(x

′)
∧

∧
i 6∈jump(e) xi = x′i

Finally, we define the transition relation N as follows:

N(x, q, t, x′, q′) ≡ ((r 6= 0) ∨ (
∧

v∈V (q 6= |v|V ) ∨ flowv(q, x, t, q′, x′)))
∧

∧
e∈E((r 6= |e|E) ∨ jumpe(q, x, q

′, x′))

Now we show that LTS(A) = (S,A, T ) is isomorphic to LTS(HA) = (DX ,DU , N).
Let us consider the map fS : V ×Rn → [m]×Rn defined by fS(v, x) = (|v|V , x)
and the map fA : Σ ∪R→ {0, . . . , l} ×R defined by fA(a) = (0, a) if a ∈ R and
fA(a) = (|a|E , 0) if a ∈ E. We have:

Flow Transitions: For all v ∈ V , t ≥ 0 we have T flow((v, x), t, (w, y)) if and
only if v = w and either t = 0 and x = y or t > 0 and (y − x)/t ∈ flow(v),
i.e. for all i ∈ [n] (yi − xi)/t ∈ flow(v)i. In turn, this is equivalent to
flowv(|v|V , x, t, |w|V , y) (observe that t = 0 implies x = x′), and hence if and
only if N((|v|V , x), (0, t), (|w|V , y)).

Jump Transitions: For all e = (v, w) ∈ E we have T e((v, x), t, (v, y)) if and
only if x ∈ pre(e), y ∈ post(e), and for all i ∈ [n] such that i 6∈ jump(e),
xi = yi. Again, this is equivalent to jumpe(|v|V , x, |w|V , y) and hence if and
only if N((|v|V , x), (|e|E , 0), (|w|V , y)).



Corollary 1. Let A be a closed RHA and let HA be the DTLHS that encodes
A. If A is bounded, then HA is bounded and conjunctive.

Proof. If the RHAA is monotone and bounded, then the DTLHSHA is bounded.
Each continuous variable xi is bounded by

∧
v∈V invv(xi). If inv(v)i is bounded,

then invv(xi) is bounded.
If A is monotone and bounded, for every mode v there is an upper bound T

to flow transition durations. Therefore, the predicate N implies the constraint
0 ≤ t ≤ T .

If A is bounded but not monotone, a bit more involved definition of HA
is required. Without going into details, in such a case the definition of HA
stems from the fact that a flow transition T flow((v, x), t, (v, y)) is equivalent to
a sequence of flow transitions T flow((v, x1), t1, (v, x2)), T flow((v, x2), t2, (v, x3)),
. . . , T flow((v, xn), tn, (v, xn+1)), with x1 = x, xn+1 = y, and

∑n
i=1 ti = t.

If HA is bounded, then N can be transformed into a conjunctive predicate
as discussed in the proof of Lemma 1.

Undecidability Results Revisited.

The reachability problem for RHAs is a pair (A, Z) whereA is an RHA and Z is a
zone ofA and it is defined as the LTS reachability problem (LTS(A), init(A), Z).

The reachability problem is undecidable for a restricted class of RHA, namely
Simple Rectangular Automata (SRA) [13]. Since SRA are bounded rectangular
automata, Corollary 1 gives immediately an alternative proof of Theorem 1.

Given an SRA S, the DTLHS HS obtained by applying the encoding in the
proof of Theorem 6 has a unique initial state and it is deterministic. In such a
case, finding weak and strong solutions can be easily reduced to a reachability
problem, thus obtaining an alternative proof of Theorem 2. On the other hand,
a proof for Theorem 3 does not follow immediately.

8 Conclusions

We have shown that, for DTLHSs, existence of a quantized sampling controller
meeting given (safety and liveness) system level specifications is undecidable.
The relevance of such a problem stems from the fact that the control software
implementing the controller in a software based control system always yields a
quantized sampling controller.

Furthermore, we have shown that Rectangular Automata (RA), and thus
Timed Automata (TA), can be modelled as DTLHSs. This shows how, by exploit-
ing availability of real valued variables, dense time behaviors can be modelled
using discrete time behaviors.

Investigating interesting classes of (discrete time) hybrid systems for which
quantized sampling control is decidable appears to be an interesting future work.
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