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ABSTRACT
Many Embedded Systems are indeed Software Based Control Sys-
tems (SBCSs), that is control systems whose controller consists of
control software running on a microcontroller device. This moti-
vates investigation on Formal Model Based Design approaches for
control software. Given the formal model of a plant as a Discrete
Time Linear Hybrid System and the implementation specifications
(that is, number of bits in the Analog-to-Digital (AD) conversion)
correct-by-construction control software can be automatically gen-
erated from System Level Formal Specifications of the closed loop
system (that is, safety and liveness requirements), by computing a
suitable finite abstraction of the plant.

With respect to given implementation specifications, the auto-
matically generated code implements a time optimal control strat-
egy (in terms of set-up time), has a Worst Case Execution Time lin-
ear in the number of AD bits b, but unfortunately, its size grows ex-
ponentially with respect to b. In many embedded systems, there are
severe restrictions on the computational resources (such as memory
or computational power) available to microcontroller devices.

This paper addresses model based synthesis of control software
by trading system level non-functional requirements (such us opti-
mal set-up time, ripple) with software non-functional requirements
(its footprint). Our experimental results show the effectiveness of
our approach: for the inverted pendulum benchmark, by using a
quantization schema with 12 bits, the size of the small controller is
less than 6% of the size of the time optimal one.

Categories and Subject Descriptors
D.2.2 [Software]: Design Tools and Techniques—Computer Aided
Software Engineering; D.2.4 [Software]: Software/Program Veri-
fication—Model Checking, Formal Methods
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1. INTRODUCTION
Many Embedded Systems are indeed Software Based Control

Systems (SBCSs). An SBCS consists of two main subsystems, the
controller and the plant, that form a closed loop system. Typically,
the plant is a physical system consisting, for example, of mechan-
ical or electrical devices whereas the controller consists of control
software running on a microcontroller. Software generation from
models and formal specifications forms the core of Model Based
Design of embedded software [16]. This approach is particularly
interesting for SBCSs since in such a case System Level Formal
Specifications are much easier to define than the control software
behavior itself. The typical control loop skeleton for an SBCS is
the following. Measure x of the system state from plant sensors go
through an analog-to-digital (AD) conversion, yielding a quantized
value x̂. A function ctrlRegion checks if x̂ belongs to the region in
which the control software works correctly. If this is not the case a
Fault Detection, Isolation and Recovery (FDIR) procedure is trig-
gered, otherwise a function ctrlLaw computes a command û to be
sent to plant actuators after a digital-to-analog (DA) conversion.
Basically, the control software design problem for SBCSs consists
in designing software implementing functions ctrlLaw and ctrlRe-
gion in such a way that the closed loop system meets given safety
and liveness specifications.

For SBCSs, system level specifications are typically given with
respect to the desired behavior of the closed loop system. The
control software is designed using a separation-of-concerns ap-
proach. That is, Control Engineering techniques (e.g., see [8])
are used to design, from the closed loop system level specifica-
tions, functional specifications (control law) for the control soft-
ware whereas Software Engineering techniques are used to design
control software implementing the given functional specifications.
Such a separation-of-concerns approach has several drawbacks.

First, usually control engineering techniques do not yield a for-
mally verified specification for the control law when quantization
is taken into account. This is particularly the case when the plant
has to be modelled as a Hybrid System, that is a system with contin-
uous as well as discrete state changes [1, 14, 4]. As a result, even
if the control software meets its functional specifications there is
no formal guarantee that system level specifications are met since
quantization effects are not formally accounted for.

Second, issues concerning computational resources, such as con-
trol software Worst Case Execution Time (WCET), can only be
considered very late in the SBCS design activity, namely once the
software has been designed. As a result, the control software may
have a WCET greater than the sampling time. This invalidates
the schedulability analysis (typically carried out before the control
software is completed) and may trigger redesign of the software or
even of its functional specifications (in order to simplify its design).



Last, but not least, the classical separation-of-concerns approach
does not effectively support design space exploration for the control
software. In fact, although in general there will be many functional
specifications for the control software that will allow meeting the
given system level specifications, the software engineer only gets
one to play with. This overconstrains a priori the design space for
the control software implementation preventing, for example, ef-
fective performance trading (e.g., between number of bits in AD
conversion, WCET, RAM usage, CPU power consumption, etc.).

1.1 Motivations
The previous considerations motivate research on Software En-

gineering methods and tools focusing on control software synthesis
rather than on control law as in Control Engineering. The objective
is that from the plant model (as a hybrid system), from formal spec-
ifications for the closed loop system behavior and from Implemen-
tation Specifications (that is, the number of bits used in the quan-
tization process) such methods and tools can generate correct-by-
construction control software satisfying the given specifications.

A Discrete Time Linear Hybrid System (DTLHS) is a discrete
time hybrid system whose dynamics is modeled as a linear predi-
cate over a set of continuous as well as discrete variables that de-
scribe system state, system inputs and disturbances. System level
safety as well as liveness specifications are modeled as sets of states
defined, in turn, as predicates. By adapting the proofs in [15]
for the reachability problem in dense time hybrid systems, it has
been shown that the control synthesis problem is undecidable for
DTLHSs [22]. Despite that, non complete or semi-algorithms usu-
ally succeed in finding controllers for meaningful hybrid systems.

The tool QKS [20] automatically synthesises control software
starting from a plant model given as a DTLHS, the number of bits
for AD conversion, and System Level Formal Specifications of the
closed loop system. The generated code, however, may be very
large, since it grows exponentially with the number of bits of the
quantization schema [21]. On the other hand, controllers synthe-
sised by considering a finer quantization schema usually have a
better behaviour with respect to many other non-functional require-
ments, such as ripple and set-up time. Typically, a microcontroller
device in an Embedded System has limited resources in terms of
computational power and/or memory. Current state-of-the-art mi-
crocontrollers have up to 512Kb of memory, and other design con-
straints (mainly costs) may impose to use even less powerful de-
vices. As we will see in Sect. 4, by considering a quantization
schema with 12 bits on the inverted pendulum system, QKS gener-
ates a controller which has a size greater than 8Mbytes.

This paper addresses model based synthesis of control software
by trading system level non-functional requirements with software
non-functional requirements. Namely, we aim at reducing the code
footprint, possibly at the cost of having a suboptimal set-up time
and ripple.

1.2 Our Main Contributions
Fig. 1 shows the model based control software synthesis flow that

we consider in this paper. A specification consists of a plant model,
given as a DTLHS, System Level Formal Specifications that de-
scribe functional requirements of the closed loop system, and Im-
plementation Specifications that describe non functional require-
ments of the control software, such as the number of bits used in
the quantization process, the required WCET, etc. In order to gen-
erate the control software, the tool QKS takes the following steps.
First (step 1), a suitable finite discrete abstraction (control abstrac-
tion [20]) Ĥ of the DTLHS plant modelH is computed; Ĥ depends
on the quantization schema and it is the plant as it can be seen from
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Figure 1: Control Software Synthesis Flow.

the control software after AD conversion. Then (step 2), given an
abstraction Ĝ of the goal states G, it computes a controller K̂ that
starting from any initial abstract state, drives Ĥ to Ĝ regardless
of possible nondeterminism. Control abstraction properties ensure
that K̂ is indeed a (quantized representation of a) controller for
the original plant H. Finally (step 3), the finite automaton K̂ is
translated into control software (C code). Besides meeting func-
tional specifications, the generated control software meets some
non functional requirements: it implements a (near) time-optimal
control strategy, and it has a WCET guaranteed to be linear in the
number of bits of the quantization schema.

To find the quantized controller K̂, QKS implements the sym-
bolic synthesis algorithm in [9], based on Ordered Bynary Decision
Diagrams (OBDDs) manipulation. This algorithm finds a time-
optimal solution, i.e. the controller K̂ drives the system Ĥ to Ĝ
always along shortest paths. The finer the control abstraction is
(i.e. when the quantization schema is more precise), the better is
the control strategy found. Unfortunately, such time optimal con-
trol strategies may lead to very large controllers in terms of the size
of the generated C control software.

Driven by the intuition that by enabling the very same action
on large regions of the state space we may decrease the control
software size, we design a controller synthesis algorithm (Alg. 2 in
Sect. 3.1) that gives up optimality and looks for maximal regions
that can be controlled by performing the same action. We formally
prove its correctness and completeness (Theor. 1 and 2 in Sect. 3.2).

Experimental results in Sect. 4 show that such a heuristic effec-
tively mitigates the exponential growth of the controller size with-
out having a significant impact on non-functional system level re-
quirements such as set-up time and ripple. We accomplish this re-
sult without changing the WCET of the synthesized control soft-
ware. For the inverted pendulum benchmark, by using a quantiza-
tion schema with 12 bits, the size of our controller is less than 6%
of the size of the time optimal controller.

1.3 Related Work
Control Engineering has been studying control law design (e.g.,

optimal control, robust control, etc.), for more than half a century
(e.g., see [8]). Also Quantized Feedback Control has been widely
studied in control engineering (e.g. see [13]). However such re-
search does not address hybrid systems and, as explained above,
focuses on control law design rather than on control software syn-
thesis. Traditionally, control engineering approaches model quan-
tization errors as statistical noise. As a result, correctness of the



control law holds in a probabilistic sense. Here instead, we model
quantization errors as nondeterministic (malicious) disturbances.
This guarantees system level correctness of the generated control
software (not just that of the control law) with respect to any possi-
ble sequence of quantization errors.

Formal verification of Linear Hybrid Automata (LHA) [1] has
been investigated in [14, 12, 29, 27]. Quantization can be seen as a
sort of abstraction. In a hybrid systems formal verification context,
abstractions has been widely studied (e.g., see [2, 3]), to ease the
verification task. On the other hand, in control software synthesis,
quantization is a design requirement since it models a hardware
component (AD converter) which is part of the specification of the
control software synthesis problem. As a result, clever abstractions
considered in a verification setting cannot be directly used in our
synthesis setting where quantization is given.

The abstraction–based approach to controller synthesis has also
been broadly investigated. Based on a notion of suitable finite state
abstraction (e.g. see [24]) control software synthesis for continu-
ous time linear systems (no switching) has been implemented in the
tool PESSOA [23]. On the same wavelength, [30] generates a con-
trol strategy from a finite abstraction of a Piecewise Affine Discrete
Time Hybrid System (PWA-DTHS). Also the Hybrid Toolbox [6]
considers PWA-DTHSs. Such tools output a feedback control law
that is then passed to Matlab in order to generate control software.
Finite horizon control of PWA-DTHSs has been studied using a
MILP based approach (e.g. see [7]). Explicit finite horizon control
synthesis algorithms for discrete time (possibly non-linear) hybrid
systems have been studied in [11]. All such approaches do not ac-
count for state feedback quantization since they all assume exact
(i.e. real valued) state measures. Optimal switching logic, i.e. syn-
thesis of optimal controllers with respect to some cost function has
also been widely investigated (e.g. see [17]). In this paper, we focus
on non-functional sofware requirements rather than non-functional
system-level requirements.

Summing up, to the best of our knowledge, no previously pub-
lished result is available about model based synthesis of small foot-
print control software from a plant model, system level specifica-
tions and implementation specifications.

2. CONTROL SOFTWARE SYNTHESIS
To make this paper self-contained, first we briefly summarize

previous work on automatic generation of control software for Dis-
crete Time Linear Hybrid Systems (DTLHSs) from System Level
Formal Specifications. We focus on basic definitions and mathe-
matical tools that will be useful later.

We model the controlled system (i.e. the plant) as a DTLHS
(Sect. 2.3), that is a discrete time hybrid system whose dynamics is
modeled as a linear predicate (Sect. 2.1) over a set of continuous
as well as discrete variables. The semantics of a DTLHS is given
in terms of a Labeled Transition Systems (LTSs, Sect. 2.2).

Given a plant H modeled as a DTLHS, a set of goal states G
(liveness specifications) and an initial region I , both represented as
linear predicates, we are interested in finding a restriction K of the
behaviour of H such that in the closed loop system all paths start-
ing in I lead to G after a finite number of steps. Moreover, we are
interested in controllers that take their decisions by looking at quan-
tized states, i.e. the values that the control software reads after an
AD conversion. This is the quantized control problem (Sect. 2.3.1).

The quantized controller is computed by solving an LTS control
problem (Sect. 2.2.1), by using a symbolic approach based on Or-
dered Binary Decision Diagrams (OBDDs) (Sect. 2.4.1). Finally,
we briefly describe how C control software is automatically gener-
ated from the OBDD controller representation (Sect. 2.4.2).

2.1 Predicates
We denote with [n] an initial segment {1, . . . , n} of the natural

numbers. We denote with X = [x1, . . . , xn] a finite sequence of
distinct variables, that we may regard, when convenient, as a set.
Each variable x ranges on a known (bounded or unbounded) in-
terval Dx either of the reals or of the integers (discrete variables).
Boolean variables are discrete variables ranging on the set B = {0,
1}. We denote with DX the set

∏
x∈X Dx. To clarify that a vari-

able x is continuous (resp. discrete, boolean) we may write xr

(resp. xd, xb). Analogously Xr (Xd, Xb) denotes the sequence
of real (integer, boolean) variables in X . Unless otherwise stated,
we suppose DXr = R|X

r| and DXd = Z|X
d|. Finally, if x is a

boolean variable we write x̄ for (1− x).
A linear expression L(X) over a list of variables X is a linear

combination of variables in X with rational coefficients. A linear
constraint over X (or simply a constraint) is an expression of the
formL(X) ≤ b, where b is a rational constant. In the following, we
also write L(X) ≥ b for −L(X) ≤ −b, L(X) = b for (L(X) ≤
b) ∧ (L(X) ≥ b), and a ≤ x ≤ b for x ≥ a ∧ x ≤ b.

Predicates are inductively defined as follows. A constraintC(X)
over a list of variablesX is a predicate overX . IfA(X) andB(X)
are predicates overX , then (A(X)∧B(X)) and (A(X)∨B(X))
are predicates over X. Parentheses may be omitted, assuming usual
associativity and precedence rules of logical operators. A conjunc-
tive predicate is a conjunction of constraints.

A valuation over a list of variables X is a function v that maps
each variable x ∈ X to a value v(x) ∈ Dx. Given a valuation v, we
denote with X∗ ∈ DX the sequence of values [v(x1), . . . , v(xn)].
We also call valuation the sequence of values X∗. A satisfying
assignment to a predicate P (X) is a valuationX∗ such that P (X∗)
holds. If a satisfying assignment to a predicate P overX exists, we
say that P is feasible. Abusing notation, we may denote with P the
set of satisfying assignments to the predicate P (X).

Two predicates P and Q over X are equivalent, denoted by
P ≡ Q, if they have the same set of satisfying assignments. Two
predicates P (X) and Q(Z) are equisatisfiable, notation P ' Q if
P is satisfiable if and only if Q is satisfiable. A variable x ∈ X is
said to be bounded in P if there exist a, b ∈ Dx such that P (X)
implies a ≤ x ≤ b. A predicate is bounded if all its variables are
bounded.

Given a constraint C(X) and a fresh boolean variable (guard)
y 6∈ X , the guarded constraint y → C(X) (if y then C(X)) de-
notes the predicate (y = 0)∨C(X). Similarly, we use ȳ → C(X)
(if not y then C(X)) to denote the predicate (y = 1) ∨ C(X). A
guarded predicate is a conjunction of either constraints or guarded
constraints. It is possible to show that, if a guarded predicate P
is bounded, then P can be transformed into an equisatisfiable con-
junctive predicate.

2.2 Labeled Transition Systems
A Labeled Transition System (LTS) is a tuple S = (S,A, T )

where S is a (possibly infinite) set of states, A is a (possibly infi-
nite) set of actions, and T : S×A×S→B is the transition relation
of S. Let s ∈ S and a ∈ A. We denote with Adm(S, s) the set
of actions admissible in s, that is Adm(S, s) = {a ∈ A | ∃s′ :
T (s, a, s′)} and with Img(S, s, a) the set of next states from s via
a, that is Img(S, s, a) = {s′ ∈ S | T (s, a, s′)}. A run or path for
an LTS S is a sequence π = s0, a0, s1, a1, s2, a2, . . . of states st
and actions at such that ∀t ≥ 0 T (st, at, st+1). The length |π| of
a finite run π is the number of actions in π. We denote with π(S)(t)

the (t + 1)-th state element of π, and with π(A)(t) the (t + 1)-th
action element of π. That is π(S)(t) = st, and π(A)(t) = at.
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Figure 2: The LTS S in Example 1.

2.2.1 LTS Control Problem
A controller for an LTS S is used to restrict the dynamics of S

so that all states in the initial region will eventually reach the goal
region. We formalize such a concept by defining the LTS control
problem and its solutions. In what follows, let S = (S,A, T ) be
an LTS, I , G ⊆ S be, respectively, the initial and goal regions.

DEFINITION 1. A controller for S is a functionK : S×A→ B
such that ∀s ∈ S, ∀a ∈ A, if K(s, a) then ∃s′ T (s, a, s′). If
K(s, a) holds, we say that the action a is enabled by K in s.

The set of states for which at least one action is enabled is de-
noted by dom(K). Formally, dom(K) = {s ∈ S | ∃a K(s, a)}.

We call a controller K a control law if K enables at most one
action in each state. Formally, K is a control law if, for all s ∈
dom(K), K(s, a) and K(s, b) implies a = b.

The closed loop system is the LTS S(K) = (S,A, T (K)), where
T (K)(s, a, s′) = T (s, a, s′) ∧K(s, a).

We call a path π fullpath [5] if either it is infinite or its last state
π(S)(|π|) has no successors (i.e. Adm(S, π(S)(|π|)) = ∅). We
denote with Path(s, a) the set of fullpaths starting in state s with
action a, i.e. the set of fullpaths π such that π(S)(0) = s and
π(A)(0) = a. Given a path π in S, we define j(S, π,G) as fol-
lows. If there exists n > 0 s.t. π(S)(n) ∈ G, then j(S, π,G) =

min{n | n > 0 ∧ π(S)(n) ∈ G}. Otherwise, j(S, π,G) =
+∞. We require n > 0 since our systems are nonterminating and
each controllable state (including a goal state) must have a path of
positive length to a goal state. Taking sup∅ = +∞, the worst
case distance of a state s from the goal region G is J(S, G, s) =
sup{j(S, π,G) | π ∈ Path(s, a), a ∈ Adm(S, s)}.

DEFINITION 2. An LTS control problem is a triple P = (S,
I, G). A strong solution (or simply a solution) to P is a con-
troller K for S, such that I ⊆ dom(K) and for all s ∈ dom(K),
J(S(K), G, s) is finite.

An optimal solution to P is a solution K∗ to P such that for
all solutions K to P , for all s ∈ S, we have J(S(K∗), G, s) ≤
J(S(K), G, s).

The most general optimal (mgo) solution to P is an optimal so-
lution K̄ to P such that for all optimal solutions K to P , for all
s ∈ S, for all a ∈ A we have K(s, a) → K̄(s, a). This defini-
tion is well posed (i.e., the mgo solution is unique) and K̄ does not
depend on I .

EXAMPLE 1. Let S = (S,A, T ) be the LTS in Fig. 2, where
S = {0, 1, 2, 3, 4}, A = {0, 1} and the transition relation T is
defined by all arrows in the picture. Let I = S and let G = {0}.
The controller K that enables all dotted arrows in the picture, is
an mgo for the control problem (S, I, G). The controller K′ =
K \ {(0, 1)} that enables only the action 0 in the state 0, would be
still an optimal solution, but not the most general. The controller
K′′ = K ∪ {(3, 0)} that enables also the action 0 in state 3 would
be still a solution (more general than K), but no more optimal.
As a matter of fact, in this case J(S(K′′), G, 3) = 3, whereas
J(S(K), G, 3) = 2.

2.3 Discrete Time Linear Hybrid Systems
Many embedded control systems can be modeled as Discrete

Time Linear Hybrid Sytems (DTLHSs) since they provide an uni-
form model both for the plant and for the control software.

DEFINITION 3. A Discrete Time Linear Hybrid System is a tu-
pleH = (X, U, Y, N) where:
X =Xr∪Xd is a finite sequence of real (Xr) and discrete (Xd)

present state variables. The sequence X ′ of next state variables is
obtained by decorating with ′ all variables in X .
U = Ur ∪ Ud is a finite sequence of input variables.
Y = Y r ∪Y d is a finite sequence of auxiliary variables, that are

typically used to model modes or “local” variables.
N(X,U, Y,X ′) is a conjunctive predicate overX∪U ∪Y ∪X ′

defining the transition relation (next state) of the system.
A DTLHS is bounded if the predicate N is bounded.
Since any bounded guarded predicate is equisatisfiable to a con-

junctive predicate (see Sect. 2.1), for the sake of readability we use
bounded guarded predicates to describe the transition relation of
bounded DTLHSs. To this aim, we also clarify which variables are
boolean, and thus may be used as guards in guarded constraints.

The semantics of DTLHSs is given in terms of LTSs as follows.
DEFINITION 4. Let H = (X , U , Y , N ) be a DTLHS. The dy-

namics ofH is defined by the Labeled Transition System LTS(H) =
(DX , DU , Ñ ) where: Ñ : DX × DU × DX → B is a function
s.t. Ñ(x, u, x′) ≡ ∃ y ∈ DY N(x, u, y, x′). A state x for H is a
state x for LTS(H) and a run (or path) forH is a run for LTS(H).

EXAMPLE 2. Let T be a positive constant (sampling time). We
define the DTLHSH = ({x}, {u}, ∅, N) where x is a continuous
variable, u is a boolean variable, and N(x, u, x′) ≡ [u → x′ =
x + ( 5

4
− x)T ] ∧ [u → x′ = x + (x − 3

2
)T ]. Since N( 5

4
, 0, 5

4
)

holds, the infinite path π0 = 5
4
, 0, 5

4
, 0 . . . is a run in LTS(H) =

(R, {0, 1}, N).

2.3.1 DTLHS Control Problem
A DTLHS control problem (H, I, G) is defined as the LTS con-

trol problem (LTS(H), I , G). To manage real valued variables, in
classical control theory the concept of quantization is introduced
(e.g., see [13]). Quantization is the process of approximating a
continuous interval by a set of integer values. In the following we
formally define a quantized feedback control problem for DTLHSs.

A quantization function γ for a real interval I = [a, b] is a non-
decreasing function γ : I 7→ Z such that γ(I) is a bounded integer
interval. We extend quantizations to integer intervals, by stipulating
that in such a case the quantization function is the identity function.

DEFINITION 5. Let H = (X,U, Y,N) be a DTLHS, and let
W = X ∪U ∪Y . A quantizationQ forH is a pair (A,Γ), where:
A is a predicate over W that explicitely bounds each variable

in W . For each w ∈ W , we denote with Aw its admissible region
and with AW =

∏
w∈W Aw.

Γ is a set of maps Γ = {γw | w ∈ W and γw is a quantization
function for Aw}.

Let W = [w1, . . . wk] and v = [v1, . . . vk] ∈ AW . We write
Γ(v) for the tuple [γw1(v1), . . . γwk (vk)].

A control problem admits a quantized solution if control deci-
sions can be made by just looking at quantized values. This enables
a software implementation for a controller.

DEFINITION 6. Let H = (X,U, Y,N) be a DTLHS, Q =
(A,Γ) be a quantization for H and P = (H, I, G) be a DTLHS
control problem. AQ Quantized Feedback Control (QFC) solution
toP is a solutionK(x, u) toP such thatK(x, u) = K̂(Γ(x),Γ(u))

where K̂ : Γ(AX)× Γ(AU )→ B.



EXAMPLE 3. LetH be the DTLHS in Ex. 2. Let P = (H, I , G)
be a control problem, where I ≡ −2 ≤ x ≤ 2.5, and G ≡ ε ≤
x ≤ ε, for some ε ∈ R. If the sampling time T is small enough
with respect to ε (for example T < ε

10
), the controller: K(x, u) =

(−2 ≤ x ≤ 0 ∧ u) ∨ (0 ≤ x ≤ 11
8
∧ u) ∨ ( 11

8
≤ x ≤ 2.5 ∧ u)

is a solution to (H, I, G). Observe that any controllerK′ such that
K′( 5

4
, 0) holds is not a solution, because in such a caseH(K) may

loop forever along the path π0 of Ex. 2.
Let us consider the quantization (A,Γ) where A = I and Γ =
{γx} and γx(x) = bxc. The set Γ(Ax) of quantized states is the
integer interval [−2, 2]. No solution can exist, because in state 1
either enabling action 1 or 0 allows infinite loops to be potentially
executed in the closed loop system. The controller K above can
be obtained as a quantized controller decreasing the quantization
step, for example by taking Γ̃ = {γ̃x} where γ̃x(x) = b8xc.

2.4 Control Software Generation
Quantized controllers can be computed by solving LTS control

problems: the QKS control software synthesis procedure consists
of building a suitable finite state abstraction (control abstraction)
Ĥ induced by the quantization of a plant modeled as a DTLHSH,
computing an abstraction Î (resp. Ĝ) of the initial (resp. goal)
region I (resp. G) so that any solution to the LTS control prob-
lem (Ĥ, Î, Ĝ) is a finite representation of a solution to (H, I, G).
In [20], we give a constructive sufficient condition ensuring that the
controller computed for Ĥ is indeed a quantized controller forH.

2.4.1 Symbolic Controller Synthesis
Control abstractions for bounded DTLHSs are finite LTSs. For

example, a typical quantization is the uniform quantization which
consists in dividing the domain of each state variable x into 2bx

equal intervals, where bx is the number of bits used by AD conver-
sion. Therefore, the abstraction of a DTLHS induced by a uniform
quantization has 2B states, whereB =

∑
x∈X bx. By coding states

and actions as sequences of bits, a finite LTS can be represented as
an OBDD representing set of states and the transition relation by
using their characteristic functions.

The QKS control synthesis procedure implements the function
mgoCtr in Alg. 1, which adapts the algorithm presented in [9].
Starting from goal states, the most general optimal controller is
found incrementally adding at each step to the set of states D(s)
controlled so far, the strong preimage of D(s), i.e. the set of states
for which there exists at least an action a that drives the system to
D(s), regardless of possible nondeterminism.

Algorithm 1 Symbolic Most General Optimal Controller Synthesis
Input: An LTS control problem (S, I, G), S = (S,A, T ).
function mgoCtr(S, I, G)
1. K(s, a)← 0, D(s)← G(s), D̃(s)← 0

2. while D(s) 6= D̃(s) do
3. F (s, a)← ∃s′ T (s, a, s′) ∧ ∀s′ [T (s, a, s′)⇒ D(s′)]
4. K(s, a)← K(s, a) ∨ (F (s, a)∧ 6 ∃a K(s, a))

5. D̃(s)← D(s), D(s)← D(s) ∨ ∃a K(s, a)
6. return 〈∀s [I(s)⇒ ∃a K(s, a)], ∃a K(s, a),K(s, a)〉

2.4.2 C Code Generation
The output of the function mgoCtr is an OBDD K represent-

ing an mgo as a relation K(x, u). Let k be the number of bits
used to represent the set of actions. We are interested in a control
law F = [f1, . . . , fk] such that K(x, F (x)) holds for all x [28].
We first compute k OBDDs f1, . . . fk representing F . For any
fi, by replacing each OBDD node with an if- then-else block
and each OBDD edge with a goto statement, we obtain a C func-
tion f_i that implements the boolean function represented by fi.

 x[2] 

 x[1] 

 x[0] 

f
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v3v2

v4
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Figure 3: OBDD for F .

int ctrlLaw(unsigned char *x){
int act=0;
L_v1: if (x[2]==1) goto L_v3;

else { act = !act;
goto L_v2;}

L_v2: if (x[1]==1) goto L_v4;
else { act = !act;

goto L_v4;}
L_v3: if (x[1]==1) return act;

else goto L_v4;
L_v4: if (x[0]==1) return act;

else { act = !act;
return act;}

}

Figure 4: C control software.

Therefore, the size of f_i is proportional to the number of nodes in
fi. Its WCET is proportional to the height of fi, since any compu-
tation of f_i corresponds to going through a path of fi. As a con-
sequence, the WCET of the control software turns out to be linear
in the number of bits of the quantization schema. The C function
ctrLaw is obtained by translating the k OBDDs representing F ,
whereas ctrReg is obtained by translating the OBDD represent-
ing the characteristic function of dom(K). The actual code imple-
menting control software is slightly more complicated to account
for node sharing among OBDDs f1, . . . , fk. Full details about the
control software generation can be found in [21].

EXAMPLE 4. Let P = (S, I, G) be the control problem in
Ex. 1. The five states of S can be represented by three boolean
variables (x0, x1, x2). Taking as input P , mgoCtr computes the
mgo K given in Ex. 1. The control law F is the OBDD depicted
in Fig. 3. In Fig. 4, it is shown a snapshot of the control software
generated for F .

3. SMALL CONTROLLERS SYNTHESIS
Within the framework defined in the previous section, when finer

(i.e. with more bits) quantization schemas are considered, bet-
ter controllers are found, in terms of set-up time and ripple (see
Sect. 4). On the other hand, the exponential growth of control
software size is one of the main obstacles to overcome in order to
make model based control software synthesis viable on large prob-
lems. As explained in Sect. 2.4.2, the size of the control software
is proportional to the size of the OBDD computed by the function
mgoCtr in Sect. 2.4.1. To reduce the number of nodes of such an
OBDD, we devise a heuristic aimed at increasing OBDD node shar-
ing by looking for control laws that are constant on large regions of
the state space.

While optimal controllers implement smart control strategies that
in each state try to find the best action to drive the system to the goal
region, the function smallCtr in Sect. 3.1 looks for more “regular”
controllers that enable the same action in as large as possible re-
gions of the state space.

Finally, note that changing the control synthesis algorithm does
not change the WCET of the generated control software since it
only depends on the number of quantization bits (Sect. 2.4.2).

3.1 Control Synthesis Algorithm
Our controller synthesis algorithm is shown in Alg. 2. To obtain

a succinct controller, the function smallCtr modifies the mgoCtr
preimage computation of set of statesD by finding maximal regions
of states from which the system reaches D in one or more steps
by repeatedly performing the same action. This involves finding
at each step a family of fixpoints: for each action a, E(s, a) is
the maximal set of states from which D is reachable by repeatedly
performing the action a only.



The function smallCtr(S, I, G) computes a solution K to the
control problem (S, I, G) (Theor. 1), such that dom(K) is max-
imal with respect to any other solution (Theor. 2).

In Alg. 2 K(s, a) denotes the OBDD that represents the con-
troller computed so far,D(s) the OBDD that represents its domain,
and D̃(s) the domain of the controller computed at the previous
iteration. The computation starts by initializing K(s, a) and its
domain D(s) to the empty OBDD, that corresponds to the always
undefined function and the empty set (line 1).

At each iteration of the outer loop (lines 2–11), a target set of
statesO(s) is considered (line 3): O(s) consists of goal statesG(s)
and the set D(s) of already controlled states. The inner loop (lines
4–7) computes, for each action a, the maximal set of states E(s, a)
that can reach the target set O(s) by repeatedly performing the ac-
tion a only. For any action a0, E(s, a0) is the mgo of the control
problem (S ′, I, O), where the LTS S ′ = (S, {a0}, T ′) is obtained
by restricting the dynamics of S to the action a0.

After that, K is updated by adding to it state-action pairs in
E(s, a). Instead of simply computingK(s, a)←K(s, a)∨E(s, a),
to keep the controller smaller, function smallCtr avoids to add toK
possible intersections between any pair of sets E(s, a) and E(s, b)
for a 6= b (line 9). As a consequence, the resulting controller K is
a control law, i.e. it enables just one action in a given state s.

The order in which the loop in lines 8–9 enumerates the set of
actions gives priority to actions that are considered before. Let
a0, a1, . . . , an be the sequence of actions as enumerated by the for
loop. If there exists at least one action a such that E(s, a) holds,
then we will have that K(s, ak) holds only for a certain ak such
that k = min{i | E(s, ai)}. In many control problems, this is
useful as it allow one to give priority to some actions, e.g. in order
to prefer “low power” actions.

The computation ends when no new state is added to the control-
lable region, i.e. when D(s), is the same as D̃(s).

Algorithm 2 Symbolic Small Controller Synthesis
Input: LTS control problem (S, I, G), with LTS S = (S,A, T )
function smallCtr(S, I, G)
1. K(s, a)← 0, D(s)← 0
2. repeat
3. O(s)← D(s) ∨ G(s), E(s, a)← 0
4. repeat
5. F (s, a)←∃s′T (s, a, s′)∧[T (s, a, s′)⇒E(s′, a)∨O(s′)]

6. Ẽ(s, a)← E(s, a), E(s, a)← E(s, a) ∨ F (s, a)

7. until E(s, a) = Ẽ(s, a)
8. for all ã ∈ A do
9. K(s, a)← K(s, a) ∨ (E(s, a) ∧ a = ã∧ 6 ∃b K(s, b))

10. D̃(s)← D(s), D(s)← D(s) ∨ ∃aK(s, a)

11. until D(s) = D̃(s)
12. return 〈∀s [I(s)⇒ ∃aK(s, a)],∃aK(s, a),K(s, a)〉

EXAMPLE 5. Let P be the control problem described in Ex. 1.
The first iteration of Alg. 2 computes the predicate E(s, a) that
holds on the set {(0, 0), (0, 1), (1, 0), (2, 0), (3, 0), (4, 1)}, that is
E(s, a) = E(s, 0) ∨ E(s, 1), where the set of pairs that sat-
isfies E(s, 0) is {(0, 0), (1, 0), (2, 0), (3, 0)} and the set of pairs
that satisfies E(s, 1) is {(0, 1), (4, 1)}. Depending on the order in
which the for loop in lines 8–9 enumerates the set of actions, in the
state 0 the resulting controllerK∗ enables the action 0 (K∗(s, a) =
E(s, 0)∪(E(s, 1)\{(0, 1)})) or the action 1 (K∗(s, a) = E(s, 1)∪
(E(s, 0)\{(0, 0)})). Observe that, in any case,K∗ is not optimal.
An optimal controller would enable the transition T (3, 1, 1) rather
than T (3, 0, 2) (see Ex. 1).

The OBDD representing the control lawF such thatK∗(x, F (x))
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Figure 5: OBDD for F ∗.

int ctrlLaw(unsigned char *x){
int act=0;
L_v1: if (x[2]==1) goto L_v2;

else return act;
L_v2: if (x[1]==1) return act;

else goto L_v3;
L_v3: if (x[0]==1) return act;

else { act = !act;
return act;}

}

Figure 6: C code for F ∗.

holds, is depicted in Fig. 5. It has 3 nodes, instead of the 4 nodes
required for the OBDD representation of the control law (Fig. 3)
obtained from the controller K given in Ex. 1. Accordingly, the
corresponding C code in Fig. 6 has 3 if-then-else blocks, in-
stead of the 4 in the C code of Fig. 4.

REMARK 1. Let π = s0, a0, s1, a1, . . . , an−1, sn be a path.
An action switch in π occurs whenever ai 6= ai+1. Controllers
generated by Alg. 2 implement control strategies with a very low
number of switches. In many systems this is a desirable property.
A “switching optimal” control strategy cannot be, however, imple-
mented by a memoryless state-feedback control law. As an exam-
ple, take again the control problem P described in Ex. 1. The con-
troller defined byE(s, a) in Ex. 5 contains all switch optimal paths.
However, to minimize the number of switches along the paths going
through state 0, a controller should enable action 0 when coming
from state 1, action 1 when coming from 4, and repeat the last ac-
tion (0 or 1) when the system is executing the self-loops in state
0. In other words, only a feedback controller with memory can
implement this control strategy.

3.2 Synthesis Algorithm Correctness
and Completeness

In the following, we establish the correctness of Alg. 2, by show-
ing that the controller computed by smallCtr is indeed a solution to
the control problem given as input (Theor. 1), and its completeness,
in the sense that the domain of the computed controller is maximal
with respect to the domain of any other solution (Theor. 2).

THEOREM 1. Let S = (S,A, T ) be an LTS, and I,G ⊆ S be
two sets of states. If smallCtr(S, I, G) returns the tuple 〈TRUE, D,
K〉, then K is a solution to the control problem (S, I, G).

PROOF. If smallCtr(S, I, G) returns the tuple 〈TRUE, D, K〉,
clearly I ⊆ dom(K) (see Alg. 2, line12). We have to show that,
for all s ∈ dom(K), J(S(K), G, s) is finite.

First of all, we show that at the end of the inner repeat loop of
smallCtr (lines 4–7), if E(s, a) holds, then we have that J(S(E),
O, s) is finite. We proceed by induction on the number of itera-
tion of the inner repeat loop. Denoting with Fi(s, a) the predicate
F (s, a) computed in line 5 during the i-th iteration, we will show
that if Fn(s, a) holds, then J(S(E), O, s) = n. If F1(s, a) holds,
then for all s′ such that T (s, a, s′), s′ belongs to O, and hence
J(S(E), O, s) = 1. Along the same lines, if Fn+1(s, a) holds,
then J(S(E), Fn, s) = 1, and by applying induction hypothe-
sis, J(S(E), O, s) = n + 1. As for termination, we have that if
Ẽ(s, a) 6= E(s, a) then at least one new state has been included in
E(s, a). Thus the function |S| − |dom(E)| is strictly positive and
strictly decreasing at each iteration.

The outer repeat loop behaves in a similar way. Denoting with
Ei(s, a) the predicate E(s, a) computed in line 3 during the i-th
iteration, if s ∈ dom(K), then Ei(s, a) holds for some i and some
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Figure 7: Inverted Pendulum with Stationary Pivot Point.

a. We prove the statement of the theorem by induction on i. If i=1,
we have that O(s) = G(s) and that J(S(E1), O, s) is finite, and
hence trivially J(S(K), G, s) is finite. If i > 1, then we have that
J(S(Ei), dom(Ei−1), s) is finite. Since, by inductive hypothesis,
also J(S(Ei−1), O, s) is finite, we have that J(S(K), G, s) ≤
J(S(Ei), dom(Ei−1), s) + J(S(Ei−1), O, s) is finite.

THEOREM 2. Let S = (S,A, T ) be an LTS, and I,G ⊆ S be
two sets of states. If smallCtr(S, I, G) returns the tuple 〈TRUE, D,
K〉, then D = dom(K) is the maximal controllable region, i.e.
for any other solution K∗ to the control problem (S, I, G) we have
dom(K∗) ⊆ dom(K).

PROOF. Let domn(K) = {s | J(S(K), s, G) = n}. We will
show by induction that, for all n, domn(K∗) ⊆ dom(K).

(n = 1) Let s ∈ dom1(K∗). Then Adm(S, s) 6= ∅ and there
exists at least one action a ∈ Adm(S, s) such that K∗(s, a) holds.
Thus, for all s′ such that T (s, a, s′) we have that s′ ∈ G. But
this means that F (s, a) holds (Alg. 2, line 5) and thereforeK(s, a)
holds. Hence s ∈ dom(K).

(n > 1) Let s ∈ domn(K∗). Then Adm(S, s) 6= ∅ and
there exists at least an action a ∈ Adm(S, s) such that K∗(s, a)
holds. Thus, for all s′ such that T (s, a, s′) we have that s′ ∈
domn−1(K∗). By inductive hypothesis, domn−1(K∗)⊆dom(K).
Therefore, for all s′ such that T (s, a, s′) we have that s′∈dom(K).
Let us suppose that s 6∈ dom(K). But this implies that Img(S, s, a)
6⊆ dom(K), otherwise Alg. 2 would not terminated before adding
s to E(s, a) at some iteration. This leads to a contradiction, be-
cause Img(S, s, a) ⊆ domn−1(K∗) ⊆ dom(K).

4. EXPERIMENTAL RESULTS
In this section we present our experiments that aim at evaluating

the effectiveness of our control software synthesis technique. We
mainly evaluate the control software size reduction and the impact
on other non-functional control software requirements such as set-
up time (optimality) and ripple.

We implemented smallCtr in the C programming language using
the CUDD [10] package for OBDD based computations. The re-
sulting tool, QKS sc, extends the tool QKS by adding the possibility
of synthesising control software (step 2 in Fig. 1) by using smallCtr
instead of the mgo controller synthesis mgoCtr .

In Sect. 4.1 and 4.2 we will present the DTLHS models of the
inverted pendulum and the multi-input buck DC-DC converter, on
which our experiments focus. In Sect. 4.3 we give the details of
the experimental setting, and finally, in Sect. 4.4, we discuss exper-
imental results.

4.1 The Inverted Pendulum as a DTLHS
The inverted pendulum [19] (see Fig. 7) is modeled by taking the

angle θ and the angular velocity θ̇ as state variables. The input of
the system is the torquing force u·F , that can influence the velocity
in both directions. Here, the variable umodels the direction and the
constant F models the intensity of the force. Differently from [19],

we consider the problem of finding a discrete controller, whose de-
cisions may be only “apply the force clockwise” (u = 1), “apply
the force counterclockwise” (u = −1)”, or “do nothing” (u = 0).
The behaviour of the system depends on the pendulum mass m,
the length of the pendulum l, and the gravitational acceleration g.
Given such parameters, the motion of the system is described by

the differential equation θ̈ =
g

l
sin θ+

1

ml2
uF . In order to obtain

a state space representation, we consider the following normalized
system, where x1 is the angle θ and x2 is the angular speed θ̇:{

ẋ1 = x2

ẋ2 =
g

l
sinx1 +

1

ml2
uF

(1)

The discrete time model obtained from the equations in (1) by in-
troducing a constant T that models the sampling time is:

(x′1 = x1 + Tx2) ∧ (x′2 = x2 + T
g

l
sinx1 + T

1

ml2
uF )

that is not linear, as it contains the function sinx1. A linear model
can be found by under- and over-approximating the non linear func-
tion sinx. In our experiments (Sect. 4), we will consider the linear
model obtained as follows.

First of all, in order to exploit sinus periodicity, we consider the
equation x1 = 2πyk+yα, where yk represents the period in which
x1 lies and yα ∈ [−π, π]1 represents the actual x1 inside a given
period. Then, we partition the interval [−π, π] in four intervals: I1
=

[
−π,−π

2

]
, I2 =

[
−π

2
, 0
]
, I3 =

[
0,
π

2

]
, I4 =

[π
2
, π

]
. In each

interval Ii (i ∈ [4]), we consider two linear functions f+
i (x) and

and f−i (x), such that for all x ∈ Ii, we have that f−i (x) ≤ sinx ≤
f+
i (x). As an example, f+

1 (yα) = −0.637yα − 2 and f−1 (yα) =
−0.707yα − 2.373.

Let us consider the set of fresh continuous variables Y r = {yα,
ysin} and the set of fresh discrete variables Y d = {yk, yq, y1, y2,
y3, y4}, with y1, . . . , y4 being boolean variables. The DTLHS
model IF for the inverted pendulum is the tuple (X,U, Y,N),
where X = {x1, x2} is the set of continuous state variables, U =
{u} is the set of input variables, Y = Y r ∪ Y d is the set of aux-
iliary variables, and the transition relation N(X,U, Y,X ′) is the
following predicate:

(x′1 = x1 + 2πyq + Tx2) ∧ (x′2 = x2 + T
g

l
ysin + T

1

ml2
uF )

∧
∧
i∈[4] yi → f−i (yα) ≤ ysin ≤ f+

i (yα)

∧
∧
i∈[4] yi → yα ∈ Ii ∧

∑
i∈[4] yi ≥ 1

∧ x1 = 2πyk + yα ∧ −π ≤ x′1 ≤ π

Overapproximations of the system behaviour increase system non-
determinism. Since IF dynamics overapproximates the dynamics
of the non-linear model, the controllers that we synthesize are in-
herently robust, that is they meet the given closed loop require-
ments notwithstanding nondeterministic small disturbances such
as variations in the plant parameters. Tighter overapproximations
of non-linear functions makes finding a controller easier, whereas
coarser overapproximations makes controllers more robust.

The typical goal for the inverted pendulum is to turn the pendu-
lum steady to the upright position, starting from any possible initial
position, within a given speed interval.

4.2 Multi-input Buck DC-DC Converter
The multi-input buck DC-DC converter [25] in Fig. 8 is a mixed-

mode analog circuit converting the DC input voltage (Vi in Fig. 8)
to a desired DC output voltage (vO in Fig. 8). As an example, buck
1In this section we write π for a rational approximation of it.
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Figure 8: Multi-input Buck DC-DC Converter.

DC-DC converters are used off-chip to scale down the typical lap-
top battery voltage (12-24) to the just few volts needed by the laptop
processor (e.g. [26]) as well as on-chip to support Dynamic Voltage
and Frequency Scaling (DVFS) in multicore processors (e.g. [18]).
The typical software based approach (e.g. see [26]) is to control
the switches u1, . . . , un in Fig. 8 (typically implemented with a
MOSFET) with a microcontroller.

In such a converter there are n power supplies with voltage val-
ues V1, . . . , Vn, n switches with voltage values vu1 , . . . , vun and
current values Iu1 , . . . , Iun , and n input diodes D0, . . . , Dn−1 with
voltage values vD0 , . . . , vDn−1 and current iD0 , . . . , iDn−1 (in the fol-
lowing, we will write vD for vD0 and iD for iD0 ).

The circuit state variables are iL and vC . However we can also
use the pair iL, vO as state variables in the DTLHS model since
there is a linear relationship between iL, vC and vO , namely: vO =
rCR
rC+R

iL+ R
rC+R

vC . We model the n-input buck DC-DC converter
with the DTLHSBn = (X ,U , Y ,N ), withX = [iL, vO],U = [u1,
. . ., un], Y = [vD , vD1 , . . . , vDn−1, iD , Iu1 , . . ., Iun , vu1 , . . ., vun].
From a simple circuit analysis we have the following equations:

i̇L = a1,1iL + a1,2vO + a1,3vD

v̇O = a2,1iL + a2,2vO + a2,3vD
where the coefficients ai,j depend on the circuit parameters R, rL,
rC , L and C in the following way: a1,1 = − rL

L
, a1,2 = − 1

L
,

a1,3 = − 1
L

, a2,1 = R
rc+R

[− rcrL
L

+ 1
C

], a2,2 = −1
rc+R

[ rcR
L

+ 1
C

],
a2,3 = − 1

L
rcR
rc+R

. Using a discrete time model with sampling time
T (writing x′ for x(t+ 1)) we have:

i′L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD

v′O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD.

The algebraic constraints stemming from the constitutive equations
of the switching elements are the following:
q0 → (vD = RoniD) q̄0 → (vD = Roff iD) vD = vun − Vn

q0 → (iD ≥ 0) q̄0 → (vD ≤ 0) iL = iD +
∑n
i=1 Iui∧

i∈[n] qi → (vDi = RonIui )
∧
i∈[n] q̄i → (vDi = RoffI

u
i )∧

i∈[n] qi → (Iui ≥ 0)
∧
i∈[n] q̄i → (vDi ≤ 0)∧

j∈[n−1] uj → (vuj = RonIuj )
∧
j∈[n−1] ūj → (vuj = RoffI

u
j )∧

i∈[n] vD = vui + vDi − Vi

4.3 Experimental Settings
All experiments have been carried out on an Intel(R) Xeon(R)

CPU @ 2.27GHz, with 23GiB of RAM, Kernel: Linux 2.6.32-5-
686-bigmem, distribution Debian GNU/Linux 6.0.3 (squeeze).

As in [19], we set pendulum parameters l and m in such a way
that g

l
= 1 (i.e. l = g) and 1

ml2
= 1 (i.e. m = 1

l2
). As for the

quantization, we setAx1 = [−1.1π, 1.1π] andAx2 = [−4, 4], and
we define AIF = Ax1 × Ax2 × Au. The goal region is defined
by the predicate GIF (X) ≡ (−ρ ≤ x1 ≤ ρ) ∧ (−ρ ≤ x2 ≤ ρ),
where ρ ∈ {0.05, 0.1}, and the initial region is defined by the
predicate IIF (X) ≡ (−π ≤ x1 ≤ π) ∧ (−4 ≤ x2 ≤ 4).

In the multi-input buck DC-DC converter with n inputs Bn, we
set constant parameters as follows: L = 2 · 10−4 H, rL = 0.1 Ω,
rC = 0.1 Ω, R = 5 Ω, C = 5 · 10−5 F, Ron = 0 Ω, Roff =
104 Ω, and Vi = 10i V for i ∈ [n]. As for the quantization, we
set AiL = [−4, 4] and AvO = [−1, 7], and we define ABn =
AiL ×AvO ×Au1 × . . .×Aun . The goal region is defined by the
predicate GBn(X) ≡ (−2 ≤ iL ≤ 2) ∧ (5− ρ ≤ vO ≤ 5 + ρ),
where ρ = 0.01, and the initial region is defined by the predicate
IBn(X) ≡ (−2 ≤ iL ≤ 2) ∧ (0 ≤ vO ≤ 6.5).

In both examples, we use uniform quantization functions divid-
ing the domain of each state variable x into 2b equal intervals,
where b is the number of bits used by AD conversion. The resulting
quantizations are QIF ,b = (AIF ,Γb) and QBn,b = (ABn ,Γb).
Since in both examples have two quantized variables, each one with
b bits, the number of quantized (abstract) states is exactly 22b.

We run QKS and QKS sc on the inverted pendulum model IF for
different values of F (force intensity), and on the multi-input buck
DC-DC model Bn, for different values of parameter n (number of
the switches). For the inverted pendulum, we use sampling time
T = 0.1 seconds when the quantization schema has less than 10
bits and T = 0.01 seconds otherwise. For the multi-input buck, we
set T = 10−6 seconds. For both systems, we run experiments with
different quantization schema.

For all of these experiments, QKS and QKS sc output a control
software in C language. In the following, we will denote withKmgo

the output of QKS, and with Ksc the output of QKS sc on the same
control problem.

4.4 Experiments Discussion
We compare the controller Kmgo and Ksc by evaluating their

size, as well as other non-functional requirements such as the set-
up time and the ripple of the closed loop system. Tables 1 and 2
summarize our experimental results.

In both tables, column |Kmgo| (resp. |Ksc|) shows the size (in
Kbytes) of the .o file obtained by compiling the output of QKS
(resp. QKS sc) with gcc. Column |Ksc|

|Kmgo| shows the ratio between
the size of the two controllers and it illustrates how much one gains
in terms of code size by using function smallCtr instead of mgoCtr .

Column Pathmgo (resp. Pathsc) shows the average length of (worst
case) paths to the goal region in the closed loop abstract systems
Ĥ(Kmgo) (resp. Ĥ(Ksc)). This number, multiplied by the sampling
time, provides a pessimistic estimation of the average set-up time
of the closed loop system. Column Pathsc

Pathmgo shows the ratio between
the values in the two previous columns, and it provides an estima-
tion of the price one has to pay (in terms of optimality) by using a
small controller instead of the mgo controller.

The last three columns show the computation time of function
smallCtr (column CPUsc, in seconds), the ratio with respect to
mgoCtr (column CPUsc

CPUmgo ), and smallCtr memory usage (column
Mem, in Kbytes). The function smallCtr is obviously slower than
mgoCtr , because of non-optimality: it performs more loops, and it
deals with more complex computations. Keep in mind, however,
that the controller synthesis off-line computation is not a critical
parameter in the control software synthesis flow.

As we can see in Tab. 1 and Tab. 2 the size of the controller Ksc

tends to become smaller and smaller with respect to the size of the
correspondent controllerKmgo as the complexity of the plant model
grows. This is a general trend, both with respect to the number of



Figure 9: Kmgo enabled actions(I0.5,b=9) Figure 10: Ksc enabled actions(I0.5,b=9)
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switches of the multi-input buck, and with respect to the number of
bits of the quantization schema (in both examples). In particular, in
the 12 bits controllers for the inverted pendulum, the size of Ksc is
just about 5% of the size of Kmgo.

The average worst case length of paths to the goal in the closed
loop system Ĥ(Ksc) tends to approach the one in Ĥ(Kmgo) as the
complexity of the system grows. Ĥ(Ksc) simulations show an even
better behaviour since most of the time, the set–up time of Ĥ(Ksc)

is about the one of Ĥ(Kmgo).
For example, Fig. 11 shows a simulation of the closed loop sys-

tems IK
sc

0.5 and IK
mgo

0.5 . It considers a quantization schema of 9
bits with trajectories starting from x1 = π, x2 = 0. In order to
show pendulum phases, x1 is not normalized in [−π, π], thus also
x1 = 2π is in the goal. As we can see, the small controller needs
slightly more time (just about a second) to reach the goal. This
behaviour can be explained by observing that the average worst
case path length is a very pessimistic measure. Thus, in practice,
both controllers stabilize the system much faster than one can ex-
pect by looking at Pathmgo and Pathsc. Similarly, the performarce of
the small controller with respect to the optimal one is much better
than one can expect by considering the ratio Pathsc

Pathmgo . Interestingly,
however, IK

mgo

0.5 follows a smarter trajectory, with one less swing.
Fig. 12 (resp. Fig. 13) shows the ripple of x1 in the inverted

pendulum closed loop system IK
mgo

0.5 (resp. IK
sc

0.5 ), by focusing on
the part of the simulation in Fig. 11 which is (almost always) inside
the goal. As we can see, the small controller yields a worst ripple
(0.0002 vs 0.0001), which may be however neglected in practice.

To visualize the very different nature of these controllers, Fig. 9
(resp. Fig. 10) shows actions that are enabled by Kmgo (resp. Ksc)
in all states of the admissible region of the inverted pendulum con-
trol problem I0.5, by considering a quantization schema of 9 bits.
In these pictures, different colors mean different actions. We ob-
serve that in Fig. 9 we need 7 colors, because in a given state Kmgo

may enable any nonempty subset of the set of actions. As expected,
the control strategy of Ksc is much more regular and thus simpler
than the one of Kmgo, since it enables the same action in relatively
large regions of the state space. Some symmetries of Fig. 9 are
broken in Fig. 10 because when more actions could be choosen,
smallCtr gives always priority to one of them (Alg. 2, lines 8–9).

5. CONCLUSIONS
We presented a novel automatic methodology to synthesize con-

trol software for Discrete Time Linear Hybrid Systems, aimed at
generating small size control software. We proved our methodol-
ogy to be very effective by showing that we synthesize controllers
up to 20 times smaller than time optimal ones. Small controllers
keep other software non-functional requirements, such as WCET,
at the cost of being suboptimal with respect to system level non-
functional requirements (i.e. set-up time and ripple). Such ineffi-
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ciency may be fully justified since it allows a designer to consider
much cheaper microcontroller devices.

Future work may consist of further exploiting small controller
regularities in order to improve on other software as well as sys-
tem level non-functional requirements. A more ambitious goal
may consist of designing a tool that automatically tries to find con-
trol software that meets non-functional requirements given as input
(such as memory, ripple, set-up time).
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