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Abstract—We present a symbolic model checking algorithm for MAD systems, we first need a model for them in which
verification of Nash equilibria in finite state mechanisms modeling protocol correctness can be formally stated and hopefully
Multiple Administrative Domains (MAD) distributed systems. proved. This issue has been studied in [1] [15] where the

Given a finite state mechanism, gproposed protocol for each . ’
agent and an indifference threshold for rewards, our model BARmodel has been introduced.

checker returns PASS if the proposed protocol is a Nash equi- N BAR, a node is eitheByzantine Altruistic, or Rational
librium (up to the given indifference threshold) for the given Byzantine nodes, as usual, can deviate from their spedificat
mechanism, FAIL otherwise. in any way for any reason. Altruistic nodes follow their

We implemented our model checking algorithm inside the —ghacification faithfully, without considering their sétiterest.
NuSMV model checker and present experimental results showing

its effectiveness for moderate size mechanisms. thional podes deviatg selfish!y from a given protocol if
doing so improves their own utility. In the BAR framework
correctness of a protocol with respect to a given property is

Cooperative services are increasingly popular distributstated as BAR tolerance. Namely, a protocoBsR tolerant
systems in which nodes (agents) belongMaltiple Admin- if it guarantees the desired property despite the presehce o
istrative DomaingMAD). Thus in a MAD distributed system Byzantine and rational players.
each node owns its resources and there is no central aythoritSeveral BAR tolerant protocols have since been proposed
owning all system nodes. Examples of MAD distributed sy$1], [36] to implement cooperative services for p2p backup
tems include Internet routing [25], [49], wireless meshtioy and live data streaming. Taking into account how hard it is to
[40], file distribution [16], archival storage [41], coop#ive formally prove correctness for classical distributed pcots
backup [6], [17], [37]. it is not surprising that formally proving that a given protb

In traditional distributed systems, nodes may deviate froim BAR tolerant is indeed quite a challenge (e.g. see [15]).
their specificationsRyzantine nodgsbecause of bugs, hard- This motivates investigating if the model checking tech-
ware failures, faulty configurations, or even maliciouseits. niques devised for classical distributed protocols capn ks
In MAD systems, nodes may also deviate because thesed in our framework. To this end we note that in order
administrators areational, i.e. selfishly intent on maximizing to show that a protocol is BAR tolerant, it is sufficient to
their own benefits from participating in the systeselfish show that it satisfies the given property when all rationale®
node3. For example, selfish nodes may change arbitrarily thdollow the protocolexactlyand then to show that all rational
protocol if that is at their advantage. nodes do, in fact, follow the protocelxactly

Cooperative file distribution (e.g. see [16]) is a typical If all rational nodes follow the given protocekactlywe are
example of the above scenario. Every peer will be happy left with a system with only Byzantine and altruistic nodes.
download file chunks from other peers. However, in ord&¥ell known model checking techniques (e.g. see [14] for a
to save bandwidth, aelfish peer may modify its protocol survey) are available to verify that such systems satisfiyeng
parameters to disallow upload of its file chunks. property despite the presence of a limited number of Bynanti

In this paper we present an automatic verification algorithmodes. It suffices, as usual, to model Byzantine nodes with
for MAD distributed systems. That is, given a protoéofor a nondeterministic automata.
MAD system and a property for P we want to automatically  Unfortunately, to the best of our knowledge, no model
verify if ¢ holds for P. checking algorithm or tool is available to address the sécon

Note that in a MAD systenany node may behave selfishly.BAR tolerance requirement, namely proving that all ratlona
This rules out the classical approach (e.g. see [48]) of trodaodes do follow the given protocelxactly
ing nodes deviating from the given protocol Bgzanting34]. To fill this gap in this paper we present a symbolic model
In fact, doing so would leave us with a system in which athecking algorithm to automatically verify that it is in the
nodes are Byzantine. Very few interesting protocols (if Janyest interest of each rational agent to follexactlythe given
work correctly under such conditions. Thus, in order tofyeri protocol. This is usually accomplished by proving that no

I. INTRODUCTION



rational agent has an incentive in deviating from the predosB. Related works

protocol. This, in turn, is done by proving that the proposed pesign of mechanisms for rational agents has been widely
protocol is aNash equilibrium(e.g. see [25], [11]). studied (e.g. [49], [45], [13]). Design methods for BAR
protocols have been investigated in [1], [36], [15], [21]eW
) o ) differ from such works since our focus here is on automatic
First of all we need a formal definition ofnechanism yerification of Nash equilibria for finite state BAR systems
suitable for model checking purposes and yet general enoygfher than on design principles for them.
to allow modeling of interesting systems. Accordingly irc6e  A|gorithms to search for pure, mixed (exact or approximate)
Il we present a definition oFinite State Mechanisrsuitable Nash equilibria in games have been widely studied (e.g. see
for modeling of finite state BAR systems as well as for d&24) [19]). We differ from such works in two ways. First,
veloping effective verification algorithms for them. We nebd g such line of research addresses explicitly presentetega
each agent with &inite State Machinelefining its admissible (normal form gameswhereas we are studying implicitly pre-
behavior, that is, using the BAR terminology, iyzantine sented games (namely, mechanisms defined using a program-
behavior. Each agent action yields a real valtegiard which  1ing janguage). Thus, (becausestdte explosionthe explicit
depends both on the system state and on agents’ actions. fdjesentation of a mechanism has size exponential in zke si
proposed protocokonstrains which actions should be takegf our input. This is much the same as the relationship batwee
in each state. This protocol defines the behavioalallistic reachapility algorithms for directed graphs and reachtgbil
agents. algorithms for finite state concurrent programs. As a rebelt
The second obstruction to overcome is the fact that we neg@orithms and tools (e.g. [27]) for explicit games cannet b
to handle infinite games since nodes are running, as usy@led in our context. Second, we are addressing a verification
nonterminating protocols. As a result, we needaok infinite  proplem, thus the candidate equilibrium is an input for us
sequences of agents’ actiorsérgtegies. This is done in Sects. yhereas it is an output for the above mentioned works.
V, VI by using adiscount factoi(as usual in game theory [26]) = The relationship between model checking and game theory
to decrease relevance of rewatds farin the future. In Prop. nhas peen widely studied in many settings.

1 we give a dynamic programming algorithm to effectively Game theoretic approaches to model checking for the ver-
compute the value of a finite strategy in our setting. ification of concurrent systems have been investigated, for
To complete our framework we need a notion of equilibriunaxample, in [32], [35], [30], [39], [51]. An example of game

that can be effectively computed by only looking at finitased model checker capable of CTL, modatalculus and

strategies and that accommodates Byzantine agents. Accgr,geciﬁcation patterns is [29].

ingly, in Sect. VII we give a definition of mechanism Nash Model checking techniques have also been applied to the

equilibrium accounting for the presence of upft@yzantine verification of knowledge and belief logics in game theareti

players (along the lines of [21]) and for agetleranceto settings. Examples are in [7], [8], [12]. An example of a mode

small € > 0) differences in rewards (along the classical lineghecker for the logic of knowledge is MCK [28].

of, e.g. [23], [26]). This leads us to the definition®off-Nash  Applications of model checking techniques to game theory

equilibrium in Def. 4. have also been investigated. For example, model checking
Sect. VIII gives our main theorem on which correctness @chniques have been widely applied to the verification of

our verification algorithm rests. Theor. 2 shows thgt-Nash games stemming from the modeling of multi-agent systems.

equilibria for finite state BAR systems can be automaticallgee for example [31], [33], [38], [20]. An example of model

verified within any desired precisioh> 0 by just looking at checker for multi-agent programs is CASP [9]. An example

long enougkfinite sequences of actions. of model checking based analysis of probabilistic games is i
Sect. IX presents our symbolic model checking algorithis.

for Nash equilibria. Our algorithm inputs are: a finite state Note that the above papers focus on verification of temporal-

mechanismM, a proposed protocol fok, the tolerance > like (e.g. temporal, belief, knowledge) properties of aament

0 for agents to differences in rewards, the maximum numbeystems or of games whereas here we focus on checking Nash

f of allowed Byzantine agents, our desired precisionr 0. equilibria (of BAR protocols).

Our algorithm return®ASSf the proposed protocol is indeed Synthesis of winning strategies for the verification game

a (e + 0)-f-Nash equilibrium forM, FAIL otherwise. leads to automatic synthesis of correct-by-constructipst s
We implemented (Sect. X) our algorithm on top of NuSM\fems (typically controllers). This has been widely invgated

[46] using ADDs A@Arithmetic Decision Diagrams[18] to in many settings. Examples are in [22], [47], [4], [2], [50],

manipulate real valued rewards. [52], [53], [3]. Note that the above papers focus on autoenati
Finally in Sect. XI we present experimental results showingynthesis (of systems or of strategies) whereas our foas he

effectiveness of our approach on moderate size mechanisigssn checking Nash equilibria (of BAR protocols).

For example, within 22 hours using 5 GB of RAM we can Summing up, to the best of our knowledge, no model

verify mechanisms whose global present state represemtaithecking algorithm for the automatic verification of Nash

requires 32 bits. The corresponding normal form games feguilibria of finite state mechanisms modeling BAR systems

such mechanisms would have more thad? entries. has been previously proposed.

A. Our contribution



Il. BASIC NOTATIONS

We denote am-tuple of objects (of any kind) in bold-

face, e.g.x. Unless otherwise stated we denote with
the i-th element of then-tuple =, =_; the (n — 1)-tuple
(x1,.. ., Tpn), and with (x_;, z) the n-tuple
<.’L'17 .. . ,Sﬁ'n>.

cy Li—15 Tijt1, - -
cyLi—15 Ty L1y - -

We denote withB the set{0,1} of boolean values (0 for

falseand 1 fortrue). We denote withn] the set{1,...,n}.
The set of subsets ok with cardinality at mostt will be
denoted byP(X).

a € A; s.t. T;(s,a) holds. Functionl; models theproposed
protocolfor agent, that is itsobedient(or altruistic, following
[1], [36]) behavior. More specifically, if agentis altruistic
then its transition relation i®;(s, a,s’) A T;(s,a).

Often we denote am player mechanisms\ with the
tuple (S,I,A,T,B,h,3). Furthermore we may also call

mechanism a mechanism skeleton. The context will always

make clear the intended meaning.

Remark 1 (Finite State Agentshn order to develop our
model checking algorithm we model each agent dsrate
State Machine(FSM). This limits agent knowledge about

IIl. FINITE STATE MECHANISMS the past. In fact, the systestaterepresents the system past
In this section we give the definition oFinite State history. Since our systems are nonterminating ones, festor
Mechanismby suitably extending the usual definition of thdand thus agent knowledge) are in general unbounded. As
synchronous parallel of finite state transition systemss THor verification of security protocols (e.g. see [43], [44{)
guarantees that all mechanisms consisting of finite staie pis the modeler responsibility to develop a suitable finiegest

tocols can be modeled in our framework.

Definition 1 (Mechanism Skeletonfn n player (agent)
mechanism skeletotY is a tuple (S,I,A, B,h,3) whose
elements are defined as follows.

S = (S1,...,S,) is ann-tuple of nonempty sets (dbcal
state$. The state spacef I/ is the set (ofglobal state} .S =
[Tz, Sic

I={(IL,...,I,) is ann-tuple of nonempty sets (dbcal

initial state9. The set ofglobal initial statesis I = [];_, I,.
A =(Ay,..., A,) is ann-tuple of nonempty sets (dbcal
actiony. The set ofglobal actions (i.e. n-tuples of local

approximation of knowledge.

Definition 3: Let M = (S,I,A,T,B,h,3), be ann
player mechanism and C [n]. Let BT : P([n]) x S x A x
S — BbesuchthaBT(Z,s,a,s’) = N\, BTi(Z, s,a;,s}),
where
Bi(sa ag, S;)
B;(s,a,s;) NTi(s, a;)
BT models the transition relation of mechanisvt, when

the set of Byzantine players i8 and all agents not it¥’ are
altruistic.

ifieZ

BT;(Z,s,a;,s;) = )
otherwise.

IV. AN EXAMPLE OF MECHANISM

actions) isA = []_, A;. The set ofi-opponents actions
A =TIy As In order to clarify our definitions we give an example of
B = (By,...,B,) is ann-tuple of functions s.t., for each @ simple mechanism. Consider the situation in which a set
i € [n], Bi + Sx A; xS; — B. Function B; models of agents cooperate to accomplish a certain job. The job, in
the transition relation of agenti, i.e. B;(s,a,s’) is true iff turn, consists of: tasks. Each task is assigned to at least one
agenti can move from (global) state to (local) states’ agent which may carry out the assigned task or may deviate
via actiona. We requireB; to be serial (i.e. Vs € S 3a € by not doing any work. Carrying out the assigned task entails
A; 3s' € S; st Bi(s,a,s") holds) anddeterministic(i.e. @ cost (negative reward) for the agent. On the other hand,
Bi(s,a,s") A B;(s,a,s") impliess’ = s”). We write B;(s,a) if all tasks forming the job are completed (and thus the job
for 3s’ Bi(s,a,s’). That is, B;(s,a) holds iff actiona is itself is completed) all agents that have worked to a taskaget
allowed in states for agenti. For each agente< [n], function reward greater than the cost incurred to carry out the asdign
B; models theunderlying behavioof agenti. That is, the set task. If the job is not completed no agent gets anything. The
of all possible choices ofational playeri. As a result,B; mechanism skeleton (Def. 1) is defined as follows.
defines the transition relation for ti@yzantinebehavior for  All agents have the same discount, gby 0.5, and the same

agenti. underlying (Byzantine) behavior, defined by the automdsgn
h = (hi,...,h,) is ann-tuple of functions s.t., for eachin Fig. 1. sleep gain

playeri € [n], h; : S x A — R. Function h; models o)

the payoff (reward) functionof player i. Note thath may reset work

be seen as a functioh : S x A — R" s.t. h(s,a) Fig. 1. Underlying behavioB; for agent:.

(hi(s,a),...,h,(s,a)) for all global statess € S and global ~ From Fig. 1 we have:S; = {0,1,2}, I, = {0}, 4;
actionsa € A. = {resetsleepwork,gain}. Let S = (5y,...,5,), s =
B = {(Bi,...,0B,) is ann-tuple of discounts that is of real (s1,...,5,) € S anda = (ay,...,a,) € A.

values such that for eache [n], 3; € (0,1). The mechanism skeleton i¢ = (S, I, A, B, h,3) where
Definition 2 (Mechanism):An n playermechanismM is a the payoff function; for agent: is defined as follows:

pair (U, T) where:d = (S,I, A, B,h,3) is a mechanism hi(s, (a_;, work)) = —1

skeleton andTl’ = (Ti,...,T,) is an n-tuple of functions hi(s, (a_s,sleep) = hi(s, (a_i, rese}) = 0

s.t., for eachi € [n], T; : S x A; — B. We requireT; to nEaATmY pATmn .

satisfy the following properties: 1J; (s, a) implies B;(s, a); hi(s, (a_s, gainy) = { 4 if (si=1) forall i € [n]

2) (nonblocking for each states € S there exists an action 0 otherwise



The mechanism (Def. 2) is\t = (S,I,A,T,B,h,j3). A strategyo for player i agreeswith a pathz (notation
where theproposed protocoll; for agenti requires agent m ~' ¢) if |o| = || and for allt < |o], o(t) = 7. (t).
to cooperate, that is to carry out the assigned task. Foymall Given a pathr, the strategy (of lengthr|) for player i
Ti(s, a;) = ((si = 0)A(a; = work)) V ((s; = 1)A(a; = gain))  associated tor is o(r,i) = 7. (0)x(¥ (1)... 7 (t) .. ..
V ((si =2) A (a; = rese}). The set ofZ-feasible strategiesf length & for playeri in

V. PATHS IN MECHANISMS states is: Straty (s, Z,i) = {o(m,i) | 7 € Pathg(s, Z)}.

Let M = (S, I, A, T, B, h, ) be ann player mechanism The _set off-fea5|blg strateglepf length & for playeri in
and letZ C [n] be a set of (Byzantine) agents. states is: Strat(s, f,i) = {o(m,9) | 7 € Pathy(s, f)}.

A path in (M, Z) (or simply apath when (M, Z) As for_ p_aths, a strategy < Stratk.(s,_Z,z) is said tko be
is understood from the context) is a (finite or infinite) sei-altruistic if @ ¢ Z. We use the notations [, and o |" to
quencer = s(0)a(0)s(1)...s(t)a(t)s(t + 1). .. where, for denote, respectively, the-prefix and the tail aftek steps of

eacht, s(t) is a global statea(t) is a global action and @ Strategy. .

BT(Z,s(t),a(t), s(t + 1)) holds. The set of paths that agree with a set of strategiefor
The length of a path is the number of global actions in &0 agenti is defined as fOHOWSPath(Sia Z,i,%) = {m €

path. We denote withr| the lengthof pathr. If 7 is infinite  Pathi(s,2) | 3o € .k = |o| A m ~* o }. WhenX is

we write || = co. Note that ifr = s(0) then|x| = 0. Thus a the singleton{s}, we simply writePath(s, Z,1, o).

path of length 0 is not empty. The guaranteed outcoméor the valug of a strategyo
In order to extract the-th global state and theth global N State s for player i is the minimum value of paths

action from a given pathr, we definer(*)(t) = s(t) and that agree witho. Formally: vi(Z,s,0) = min{vi(7) | 7 €

7@ (t) = a(t). To extract local actions, we denote withPath(s, Z,i,0)} _ N

nga)(t) the actiona;(¢) at staget of agenti and with W(_ai) (t) Thevalueof a states at horizonk for playeri is the guaran-

the actionsa_;(¢) at staget of all agents but. teed outcome of the best strategy of lengttarting at state.
For each agent € [n], the value of a pathr is v;(r) = Formally:vi(Z, s) = max{vi(Z,s,0) | o € Straty(s, Z,1)}.
=1 gt (x()(),7@)(¢)). Note that for any pathr and Theworst case valuef a states at horizonk for playeri is

t=0 .
agenti ¢ [n] the path valueu;(r) is well defined also the outcome of the worst strategy of lendtlstarting at state

- - £00 s “ . Formally,u*(Z, s) = min{v;(Z, s, € Straty(s, Z,4)}.
when |r| = co since the serie§ ", Bth; (nl )(t).,w( )(t)) s As usua{ I\L/:/é wﬁl)wr;tnelﬁg(s) fo;fq)jlg(z s)raagij»(ZZ)j)
converges for alf3; € (0,1). The path value vectors defined for uo (7 ’) A i \ ) i

: = U \Z,8). :
as:v(r) N {1 (7)., vn (1)) 4 to bei-altruistic if for all "€ <f|n|te horizon value of a state can be effectively com-
A path = ('S (M’(Lg) Is said to be:-altruistic If for a puted by using a dynamic programming approach (Prop. 1).
t< |.7r|’ Ti(m™(t), ;" (1)) hOIdS', , This is one of the main ingredients of our verification algo-
(Given a pathr and a nonnegative integér< |r| we denote i (sect. 1X). We omit proofs because of lack of space.
with |, the prefix of 7 of lengthk, i.e. the finite pathr|; = Proposition 1:Let M = (S,I,A,T,B,h,3) be ann
5(0)a(0)s(1)...s(k) and with7|* thetail of =, i.e. the path player mechanismi ¢ [n], Z C [n] and s € S. The state

" = s(k)a(k)s(k +1)...s(a(t)s(t+1). ... values at horizork for playeri can be computed as follows:
We denote withPathy (s, Z) the set of all paths of length 0(Z,5) 0z S‘; y O_Z P '
v\, 8) = Uj(4,8) = U,

k starting ats. Formally, Pathy(s, Z) = {m | = is a path in * .
(M, Z) gnd\ﬂ =k angﬂ.(s)(()];(: S}) { | P ® Uf+1(Zk,S) :/ MaXg;eA; Mg _;eA_; ,{hi(sv <a—i7ai>)
We denote withPathy (s, f) the set of all paths of length if{ vi (Z,8")| BT(Z,s,({ai,a),s")}
feasible with respect to all sets of Byzantine agents ofinatd ~ * “i k(Z’ s), = Mo, e, Milla_ie4_; {hi(s, (a—i, ai)) +
ity at most f. Formally, Pathy (s, f) = U, ;< Path(s, 2). Piui(Z,8")| BT(Z,s,(a—i,a:), ")}
We write Pathy(s) for Pathg(s,n). VII. NASH EQUILIBRIA IN MECHANISMS
Unless otherwise stated in the following, we omit the
subscript or superscript horizon when itds. For example
we write Path(s, Z) for Path(s, Z).
Note that ifi ¢ Z, all paths inPathg (s, Z) arei-altruistic,
that is, agent behaves accordingly to the proposed protoc

Our notion ofNash equilibriumfor a mechanism combines

' those in [23], [21]. Intuitively, a mechanisov! is e- f-Nash,

if as long as the number of Byzantine agents is no more than
01” (e.g. see [21]), no rational agent has an interest greager th
¢ (e.g. see [23], [26]) in deviating from the proposed protoco

VI. STRATEGIES in M.
Let M =(S,I,A,T,B,h,3) be ann player mechanism Definition 4 ¢-f-Nash): Let M = (S,1,A,T,B,h,3)
and letZ C [n] be a set of (Byzantine) agents. be ann player mechanismf € {0,...,n} ande > 0. M

As usual in a game theoretic setting, we need to distinguishe- f-Nash for playerti € [n] if VZ € Py([n]\ {i}), Vs € I,
player actions (i.e. local actions) from those of its oppuse w;(Z,s)+¢e > v;(ZU{i}, s). M ise-f-Nash if it ise- f-Nash
This leads to the notion of strategy. for each player € [n].

A strategyo is a (finite or infinite) sequence of local actions Note thate-0-Nash is thes-Nash equilibrium defined in
for a given player. Théength|o| of o is the number of actions [23], [26]. Furthermore, stretching Def. 4 by settiag= 0,
in o (thus if |o| = 0, the strategy is empty). we see that Q~Nash is thef-Nash equilibrium defined in



[21] whereas 0-0-Nash is the classical Nash equilibriumg.(e. A(k) < 1. That is, there is no finite horizon that allows us to
see [26]). conclude thaiM is 1-0-Nash. Note, however, that for alt> 0
Observe that, for each agefitwe compare agent best there exists & > 0 s.t. for allk > k, A(k) < 1+6. Thus, for
reward when it considers deviating from the protoagl Z U  all § > 0, by just considering a suitable finite horizén> 0,
{i}, 8)), with agenti; worst reward when it obeys the protocowe can verify thatM is (1 + §)-0-Nash.
(u;(Z,s)). The reason for tolerating a smah)(tolerange on VIIl. V ERIFYING &- f-NASH EQUILIBRIA
rewards when deviating from the proposed protocol in Def. 4
is that our aim is to verify Nash equilibria by looking only at
finite strategies. It is well known (e.g. see Sect. 4.8 of ):26}'\'
that e-0-Nash equilibria have been introduced to get within a
finite horizon equilibria that are only available with an imfe
horizon. This means that a finite horizon may not suffice lt
check that a mechanism is 0-0-Nash. The following examp(f
]zcargnrsir?t gl§r|W|ng the above well known game-theoreticsilies (S.I,A,T,B,h,8) be an n player mechanism,
g it in our context.
Example 1:Let M be a one agent (named 1) mechanisth < {0 o n}, € >0 and § > 0. Furthermore, for
defined as follows. The underlying behaviBg for agent 1 is each agent € [r] let
shown in Fig. 2 where on the automaton edges we show action) Mi = max{|h; Jg{s ,a)| | s € Sanda € A}.
names as well as payoff values since in this simple case the2) Ei(k) = 55k77&-

In this Section we give our main theorem (Theor. 2) on
hich correctness of our verification algorithm (Sect. 1¥3ts.
Example 2 shows that, in general, using finite horizon ap-
proxma‘uons we cannot verify- f-Nash equilibria. However

e very same example suggests that we may get arbitrarily
ose to this result. This is indeed our main theorem.
Theorem 2 (Main Theorem):et M =

payoff function depends only on local states and local astio A(k) = max{vf(Z U{i},s) — uf(Z,s)|sel,Z¢
of the agent. The discount factor for agent Bis= % Let the 7J’f([n] \{ih}

proposed protocoll” of M be defined as followsT (s,a) =  4) €1(i,k) = A;(k) — 2E;(k)
(s=0A(a=a)V(s=D)A(a=d)V (s=2A(a= 5) e2(i,k) = Ai(k) +2E;(k)

e)) V (s > 3). We focus on the cas¢ = 0, that is there are  For each agent, let k; be s.t.4 F;(k;) < §. Then we have:
no Byzantine agents and henZe= . For allk > 0 we have: 1) If for eachi € [n], € > e2(i,k;) > 0 then M is e-f-

uk(2,0) = —1+ 3 3K 2(—1)i=(~1)* 54+ (the protocolT Nash.
prescribes to follow the strategy(de)~) and vf({1},0) =  2) If there existsi € [n] S.t.0 < ¢ < &, (i, k;) then M is
i (v1 will use strategyo; = a(de)” whenk is even and not - f-Nash. Of course in such a case a fortigi is
oy = c(gh)® whenk is odd). Therefore, i is oddu? (@, 0) < not 0-f-Nash.
vf({1},0), and ifk is evenul(@ 0) = Ul({l} 0), Thus there  3) If for eachi € [n], £, (i, k;) < € and there existg € [n]
isnok > 0 s.t. for allk > k, uf(2,0) > vf({1},0). s.t.e < e5(j, k;) then M is (¢ + 6)-f-Nash.
b/0 Proof: Because of lack of space we omit the proof. See

/_\ [42] for the complete proof. [ ]
@ @g@ﬁ@ ________ @ IX. e-f-NASH VERIFICATION ALGORITHM

e/=3 (__) Resting on Prop. 1 and on Theor. 2, Algorithm 1 verifies
Fig. 2. Agent Behav'or f/=1 that a givenn agent mechanisnM is e-f-Nash.

Findinge-0-Nash equilibria even for finite horizon games is In Algorithm 1, s anda are vectors (of boolean variables)
not trivial (e.g. see [19]). As for infinite games, we notetthaanging respectively on (the boolean encoding of) stafs (
game-theory results focus on showing thatsasmall enough and actions 4).
can be found so that an infinite horizon 0-0-Nash equilibrium The setZ of Byzantine agents in Algorithm 1 can also
becomes a finite horizon-0-Nash one (e.g. see [26]). Ourbe represented with a vector of boolean variableb =
concern here is different. We are giver(fixed) and want to (b,...b,) such that for each agente [n], agent: is Byzan-
verify if the given mechanism is-0-Nash (actually;- f-Nash). tine iff b; = 1. Accordingly, the constraing € Py ([n] \ {i})

From Example 1 one may conjecture thaf-Nash € > 0) in Def. 4 becomes a constraint &) namely:(>"'—7b; < f
equilibria can be verified by just looking &ing enougtfinite A »; = 0). Along the same lines, the sef U {i} (used
horizons. Unfortunately this is not always the case as shownAlgorithm 1) can be represented with the boolean vector
by the following example. b[b; := 1] obtained fromb by replacing variablé; in b with

Example 2:Consider again the mechanism in Exam- the boolean constart For readability in Algorithm 1 we use
ple 1. Let theproposed protocdl” of M be defined as follows: Z rather than its boolean representation
Ti(s,a) = ((s =0)A(a=Db)) vV (s>1). Also in this case  First of all, in line 3 of Algorithm 1, we compute the horizon
we focus on the case in which there are no Byzantine ageriiseeded for agent to achieve the required accuragy
thatisf=0andZ = @ For all k£ > 0 we have uk(2,0) = Lines 4-11 use Prop. 1 to compute state values at horizon
Zle -3 =-1 + % and U1 Y({1},0) = 5. For allk we & of states with the set of Byzantine playets when playeri
have: A(k) = v§({1},0) — u}(@,0) = (1 + 5). Now, M is  obeys the protocok((Z, s)) as well as when playerbehaves
clearly 1-0-Nash however there is ko> 0 s.t. for allk > k, arbitrarily within the underlying behaviowf(Z U {i}, s)).



Line 12 computes the max difference between initial state From Algorithm 1 we see that we only have two kinds
values for a rational player and those for a player followtimg of functions: b2b functions, taking booleans and returning
proposed protocol, by also maximizing over dllc P;([n]\ a boolean value, and2r functions, taking booleans and
{i}). (hypothesis 3 of Theor. 2, see also Def. 4). Line 18turning a real value. As usud@2b functions can be ef-
computes the values in hypotheses 4 and 5 of Theor. 2. fectively represented using OBDDs. As fo2r functions we

Line 14 returnsFAIL as soon as the hypothesis of thesis @sed theArithmetic Decision Diagram$ADDs) available in
of Theor. 2 is satisfied. In such a case from Theor. 2 we kndve CUDD package. ADDs are designed to represent and
that the given mechanism is netf-Nash and thus it is not efficiently manipulatdo2r functions returning reals represented
f-Nash. asC 64 bit double. All arithmetical operations on ADDs used

Line 15 (16) returnsPASS withe (PASS withe + §) when in Algorithm 1 are available in the CUDD package. The only
the hypothesis of thesis 1 (3) of Theor. 2 is satisfied. In suoies that we had to implement ourselves werethe and
a case from Theor. 2 we know that the given mechanismusn functions on ADDs. We developed them with a suitable

e-f-Nash (€ + 0)- f-Nash). traversal of the ADD to be minimized (or maximized). See
[42] for a full description of our symbolic implementatiori o
Algorithm 1 Checking if a mechanism is-f-Nash Algorithm 1.
1: CheckNasfmechanismM, int f, doublee, 9) X|. EXPERIMENTAL RESULTS

2: for all ¢ € [n] do | der t focti f Nash verif
3 Let k such thatt (k) < 6 n order to assess effectiveness of our Nash verifier we

Letse S andZ € P;([n] \ {i}) present experimental results on its usage on alayer mech-

4.
5. 00(Z,8) — 0; ul(Z, 8) — O; anismM generalizing the mechanism presented in Section IV.
6 fori—1tokdo ’ This is a meaningful and scalable case study that well serves
7: vi(Z U {i}, s) « max IHEIE [hi(s, {a;, a_)+ our purposes.
8: +ﬁivf*1(s’,Zzu {;})_]: B A. Mechanism Description
9 BT(Z U {i}, s, (a;,a—;),s’) We are given a sef = {0,...m — 1} of m jobsand a set
10: ui(Z,s) min min [h(s, (a;; a—))+ T ={0,...q—1} of ¢ tasks Functionn : 7 — P(7) defines
10 +ﬂ»u’:—11(Z s/ﬁ BﬁZ s, (ai,a_s), ") for each jobj the set of tasks)(j) needed to completg.
122 A — mavak(z U{il,s) — u¥(Z,8) |sel,Ze Each agent € [n] is supposed to workpfoposed protocgl

P () \ {i})}l ! on a given sequence of (not necessarily distinct) tagks
130 e1(i) «— A — 2E;(k); e2(i) «— Ay + 2E;(k) (1(i,0),...7(i,a(i) — 1)) starting from7(i,0) and returning
14: if (e < £1(4)) return (FAIL) to 7(i,0) after taskr(i, (i) — 1) has been completed. An
15: if (i € [n](e(i) < ¢)) return (PASS withe) agent maydeviate from the proposed protocol by delaying
16: else return (PASS with (s + §)) execution of a task or by not executing the task at all. This

models many typical scenarios in cooperative services.
An agent incurs a&ostby working towards the completion
of its currently assigned task. Once an agent has completed a
We implemented Algorithm 1 within the NuSMV [46] task it waits for its reward (if any) before it considers wioik
model checker. Here we briefly describe the main ide&s the next task in its list. As soon as an agent receives its
bridging the gap between Algorithm 1 and its NuSMV imfeward it considers working to the next task in its list.
plementation. A job is completed if for each task it needs, there exists at
First of all, we extended the SMV language so as to Heast one agent that has completed that task. In such a case,
able to define mechanisms. We should keep in mind thafich of such agents receivereward Note that even if two
once we have verified that the proposed protocol is a Na&r more) agents have completed the same task, all of them
equilibrium for the given mechanism, then we will undertake get a reward.
standard CTL verification in order to check that the proposedAgenti can be modeled as follows. Its set of statesXis
protocol satisfies the desired safety and liveness praserti=Y; x Z;, where:Y; = {0,...(a(i)— 1)} and Z; = {0, 1, 2}.
Accordingly, we confined most of our extensions to the SM%tate variabley; ranges orl;, state variable,; ranges onZ;.
language inside SMV comments so that mechanism modelsState variablez; models the working state of agerit
can also be used for standard CTL verification again witlamely,z; = 0 if agent: is not working;z; = 1 if agent: has
NuSMV. done its assigned work (that is it has completed its culyentl
As a second step we implemented Algorithm 1 usingssigned task)z; = 2 if agent: currently completed task
Ordered Binary Decision Diagram@BDDs) [10] resting on has been used to complete a job. In the last case dggets
the CUDD [18] OBDD package (which is also the one useits reward for having completed a task used by a job. State
in NuSMV). Note that all functions in Algorithm 1 dependvariabley; keeps track of the task currently assigned to agent
only on boolean variables, namely those representingsstate That is,y; = p iff agent: is supposed to complete task
actions and sets of Byzantine agents. 7(i,p) in its sequence of assigned tasks.

X. IMPLEMENTATION



Agenti’s set of initial states id; = {(0,0)} whereas agent
i's set of actions is4; = {0, 1} with variablea; ranging on it.
Variablea, models agent's choices. Namelya; = 1 if agent
7 will work. and a; = 0 otherwise.

The state space oM is S = (Y1, 74, ... Y,, Z,). The set
of initial states ofM is I = (I, ... I,,) We denote withs
the vector (of present state variablés), zi, ... y,, z,) and
with a the vector (of action variablesh, ... a,).

Let ®(4) be the set of pairsj( p) such that the-th task of
agent: task sequence is needed for jgbFormally, ®(4)
{G.p) | ({0, ali) =1} A (j € T) A (7(i,p) € n()))}-

Let T'(¢) be the set of pairsu{, ) such that the-th task
of agentw task sequence is Formally,I'(¢) = {(w, )| (w €
[n]) A (re{0,...a(w) —1}) A (t = 7(w,r))}.

Let ¢;(s) be a boolean function which is true iff jopis
completed. That is, if for each tagkin job j there exists an
agentw such thatw has completed task Formally, ¢;(s)
Nten() Y (w,ryer) (Yw = 1) A (2w = 1)).

Let v;(s) be a boolean function which is true iff agehts

Sects. XI-A, XI-B. ColumnByzantinesin Table XI-C gives

the number of Byzantine agentg)( In all experiments we

takee = 0.01 and accuracy = 0.005. With such settings the

value of k in line 3 of Algorithm 1 turns out to bé5 in all

our experiments. ColumNashin Table XI-C shows the result

returned by Algorithm 1, namel\RASSif the mechanisms is

e-f-Nash or(e + ¢)- f-Nash,FAIL otherwise. The meaning of

the other columns in Table XI-C should be self-explicative.
From Table XI-C we see that we can effectively handle

moderate size mechanisms. Such mechanisms correspond in-

deed to quite large games. In fact, given a finite horizpan

n player mechanism can be seen as a game whose outcomes

aren-tuple (o4, ..., 0,) of strategies of lengtt, whereo; is

the strategy played by agentIf the underlying behavior of

agenti allows it two actions for each state, then there 2lre

strategies available for agentThis would yield a game whose

normal form ha*” entries. In the mechanism used in Table

XI-C, even without considering Byzantine players, eachnage

can choose at least amoyfigh(k) (the k-th Fibonacci number)

currently assigned to a task needed for a currently contpletstrategies (many more if we consider Byzantine players)h Wi

job. Formally,v;(s) = (V(jpeaq) (yi = p) A (¢;(s))).
Finally, the underlying behavioB; of agent: is defined as
follows: B;(s, a;, yi', zi') =

(i =0)A(a; =0)A (yi' = yi) A (2’ = z3)) V
(z=0AN(@ =A@ =y) AN (@ =1)V
(i =) Avi(s) ANz’ =2) Ayi' = yi)) V

((zi =) A —i(s) Az’ = 1) A(yi' = yi) V

(i =2) A (yi' = (yi + 1) moda(i)) A (z; = 0)).

The proposed protocdl; for agenti is T;(s, a;) = (a; = 1),
that is agent is supposed to carry out the assigned task
soon as it can. Rewartd; for agenti is defined as follows:

-1 if ((z; = 0) A (a; = 1))
hi(s,ai) = +4 if (Zi = 2)
0 otherwise

B. Experimental Settings

horizonk = 15 andn = 8 players this leads to a normal form
game with at leasfib(k)" = 610° ~ 10?2 entries.

XIl. CONCLUSIONS

We present a symbolic model checking algorithm for verifi-
cation of Nash equilibria in finite state mechanisms modglin
MAD distributed systems. Our experimental results show the
effectiveness of the presented algorithm for moderate size
mechanisms. For example, we can handle mechanisms which
gerresponding normal form games would have more fttgh
entries.

Future research work include: improvements to the pre-
sented algorithm in order to handle larger mechanisms; veri
fication of Nash equilibriaobustwith respect to agentollu-
sions
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