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Abstract—We present a symbolic model checking algorithm for
verification of Nash equilibria in finite state mechanisms modeling
Multiple Administrative Domains (MAD) distributed systems.

Given a finite state mechanism, aproposed protocol for each
agent and an indifference threshold for rewards, our model
checker returns PASS if the proposed protocol is a Nash equi-
librium (up to the given indifference threshold) for the given
mechanism,FAIL otherwise.

We implemented our model checking algorithm inside the
NuSMV model checker and present experimental results showing
its effectiveness for moderate size mechanisms.

I. I NTRODUCTION

Cooperative services are increasingly popular distributed
systems in which nodes (agents) belong toMultiple Admin-
istrative Domains(MAD). Thus in a MAD distributed system
each node owns its resources and there is no central authority
owning all system nodes. Examples of MAD distributed sys-
tems include Internet routing [25], [49], wireless mesh routing
[40], file distribution [16], archival storage [41], cooperative
backup [6], [17], [37].

In traditional distributed systems, nodes may deviate from
their specifications (Byzantine nodes) because of bugs, hard-
ware failures, faulty configurations, or even malicious attacks.
In MAD systems, nodes may also deviate because their
administrators arerational, i.e. selfishly intent on maximizing
their own benefits from participating in the system (selfish
nodes). For example, selfish nodes may change arbitrarily their
protocol if that is at their advantage.

Cooperative file distribution (e.g. see [16]) is a typical
example of the above scenario. Every peer will be happy to
download file chunks from other peers. However, in order
to save bandwidth, aselfish peer may modify its protocol
parameters to disallow upload of its file chunks.

In this paper we present an automatic verification algorithm
for MAD distributed systems. That is, given a protocolP for a
MAD system and a propertyϕ for P we want to automatically
verify if ϕ holds forP .

Note that in a MAD systemanynode may behave selfishly.
This rules out the classical approach (e.g. see [48]) of model-
ing nodes deviating from the given protocol asByzantine[34].
In fact, doing so would leave us with a system in which all
nodes are Byzantine. Very few interesting protocols (if any)
work correctly under such conditions. Thus, in order to verify

MAD systems, we first need a model for them in which
protocol correctness can be formally stated and hopefully
proved. This issue has been studied in [1], [15] where the
BARmodel has been introduced.

In BAR, a node is eitherByzantine, Altruistic, or Rational.
Byzantine nodes, as usual, can deviate from their specification
in any way for any reason. Altruistic nodes follow their
specification faithfully, without considering their self-interest.
Rational nodes deviate selfishly from a given protocol if
doing so improves their own utility. In the BAR framework
correctness of a protocol with respect to a given property is
stated as BAR tolerance. Namely, a protocol isBAR tolerant
if it guarantees the desired property despite the presence of
Byzantine and rational players.

Several BAR tolerant protocols have since been proposed
[1], [36] to implement cooperative services for p2p backup
and live data streaming. Taking into account how hard it is to
formally prove correctness for classical distributed protocols
it is not surprising that formally proving that a given protocol
is BAR tolerant is indeed quite a challenge (e.g. see [15]).

This motivates investigating if the model checking tech-
niques devised for classical distributed protocols can also be
used in our framework. To this end we note that in order
to show that a protocol is BAR tolerant, it is sufficient to
show that it satisfies the given property when all rational nodes
follow the protocolexactlyand then to show that all rational
nodes do, in fact, follow the protocolexactly.

If all rational nodes follow the given protocolexactlywe are
left with a system with only Byzantine and altruistic nodes.
Well known model checking techniques (e.g. see [14] for a
survey) are available to verify that such systems satisfy a given
property despite the presence of a limited number of Byzantine
nodes. It suffices, as usual, to model Byzantine nodes with
nondeterministic automata.

Unfortunately, to the best of our knowledge, no model
checking algorithm or tool is available to address the second
BAR tolerance requirement, namely proving that all rational
nodes do follow the given protocolexactly.

To fill this gap in this paper we present a symbolic model
checking algorithm to automatically verify that it is in the
best interest of each rational agent to followexactlythe given
protocol. This is usually accomplished by proving that no



rational agent has an incentive in deviating from the proposed
protocol. This, in turn, is done by proving that the proposed
protocol is aNash equilibrium(e.g. see [25], [11]).

A. Our contribution

First of all we need a formal definition ofmechanism
suitable for model checking purposes and yet general enough
to allow modeling of interesting systems. Accordingly in Sect.
III we present a definition ofFinite State Mechanismsuitable
for modeling of finite state BAR systems as well as for de-
veloping effective verification algorithms for them. We model
each agent with aFinite State Machinedefining its admissible
behavior, that is, using the BAR terminology, itsByzantine
behavior. Each agent action yields a real valuedreward which
depends both on the system state and on agents’ actions. The
proposed protocolconstrains which actions should be taken
in each state. This protocol defines the behavior ofaltruistic
agents.

The second obstruction to overcome is the fact that we need
to handle infinite games since nodes are running, as usual,
nonterminating protocols. As a result, we need torank infinite
sequences of agents’ actions (strategies). This is done in Sects.
V, VI by using adiscount factor(as usual in game theory [26])
to decrease relevance of rewardstoo far in the future. In Prop.
1 we give a dynamic programming algorithm to effectively
compute the value of a finite strategy in our setting.

To complete our framework we need a notion of equilibrium
that can be effectively computed by only looking at finite
strategies and that accommodates Byzantine agents. Accord-
ingly, in Sect. VII we give a definition of mechanism Nash
equilibrium accounting for the presence of up tof Byzantine
players (along the lines of [21]) and for agenttolerance to
small (ε > 0) differences in rewards (along the classical lines
of, e.g. [23], [26]). This leads us to the definition ofε-f -Nash
equilibrium in Def. 4.

Sect. VIII gives our main theorem on which correctness of
our verification algorithm rests. Theor. 2 shows thatε-f -Nash
equilibria for finite state BAR systems can be automatically
verified within any desired precisionδ > 0 by just looking at
long enoughfinite sequences of actions.

Sect. IX presents our symbolic model checking algorithm
for Nash equilibria. Our algorithm inputs are: a finite state
mechanismM, a proposed protocol forM, the toleranceε >

0 for agents to differences in rewards, the maximum number
f of allowed Byzantine agents, our desired precisionδ > 0.
Our algorithm returnsPASSif the proposed protocol is indeed
a (ε + δ)-f -Nash equilibrium forM, FAIL otherwise.

We implemented (Sect. X) our algorithm on top of NuSMV
[46] using ADDs (Arithmetic Decision Diagrams) [18] to
manipulate real valued rewards.

Finally in Sect. XI we present experimental results showing
effectiveness of our approach on moderate size mechanisms.
For example, within 22 hours using 5 GB of RAM we can
verify mechanisms whose global present state representation
requires 32 bits. The corresponding normal form games for
such mechanisms would have more than1022 entries.

B. Related works

Design of mechanisms for rational agents has been widely
studied (e.g. [49], [45], [13]). Design methods for BAR
protocols have been investigated in [1], [36], [15], [21]. We
differ from such works since our focus here is on automatic
verification of Nash equilibria for finite state BAR systems
rather than on design principles for them.

Algorithms to search for pure, mixed (exact or approximate)
Nash equilibria in games have been widely studied (e.g. see
[24], [19]). We differ from such works in two ways. First,
all such line of research addresses explicitly presented games
(normal form games) whereas we are studying implicitly pre-
sented games (namely, mechanisms defined using a program-
ming language). Thus, (because ofstate explosion) the explicit
representation of a mechanism has size exponential in the size
of our input. This is much the same as the relationship between
reachability algorithms for directed graphs and reachability
algorithms for finite state concurrent programs. As a resultthe
algorithms and tools (e.g. [27]) for explicit games cannot be
used in our context. Second, we are addressing a verification
problem, thus the candidate equilibrium is an input for us
whereas it is an output for the above mentioned works.

The relationship between model checking and game theory
has been widely studied in many settings.

Game theoretic approaches to model checking for the ver-
ification of concurrent systems have been investigated, for
example, in [32], [35], [30], [39], [51]. An example of game
based model checker capable of CTL, modalµ-calculus and
specification patterns is [29].

Model checking techniques have also been applied to the
verification of knowledge and belief logics in game theoretic
settings. Examples are in [7], [8], [12]. An example of a model
checker for the logic of knowledge is MCK [28].

Applications of model checking techniques to game theory
have also been investigated. For example, model checking
techniques have been widely applied to the verification of
games stemming from the modeling of multi-agent systems.
See for example [31], [33], [38], [20]. An example of model
checker for multi-agent programs is CASP [9]. An example
of model checking based analysis of probabilistic games is in
[5].

Note that the above papers focus on verification of temporal-
like (e.g. temporal, belief, knowledge) properties of concurrent
systems or of games whereas here we focus on checking Nash
equilibria (of BAR protocols).

Synthesis of winning strategies for the verification game
leads to automatic synthesis of correct-by-construction sys-
tems (typically controllers). This has been widely investigated
in many settings. Examples are in [22], [47], [4], [2], [50],
[52], [53], [3]. Note that the above papers focus on automatic
synthesis (of systems or of strategies) whereas our focus here
is on checking Nash equilibria (of BAR protocols).

Summing up, to the best of our knowledge, no model
checking algorithm for the automatic verification of Nash
equilibria of finite state mechanisms modeling BAR systems
has been previously proposed.
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II. BASIC NOTATIONS

We denote ann-tuple of objects (of any kind) in bold-
face, e.g.x. Unless otherwise stated we denote withxi

the i-th element of then-tuple x, x−i the (n − 1)-tuple
〈x1, . . . , xi−1, xi+1, . . . , xn〉, and with 〈x−i, x〉 the n-tuple
〈x1, . . . , xi−1, x, xi+1, . . . , xn〉.

We denote withB the set{0, 1} of boolean values (0 for
false and 1 for true). We denote with[n] the set{1, . . . , n}.
The set of subsets ofX with cardinality at mostk will be
denoted byPk(X).

III. F INITE STATE MECHANISMS

In this section we give the definition ofFinite State
Mechanismby suitably extending the usual definition of the
synchronous parallel of finite state transition systems. This
guarantees that all mechanisms consisting of finite state pro-
tocols can be modeled in our framework.

Definition 1 (Mechanism Skeleton):An n player (agent)
mechanism skeletonU is a tuple 〈S, I,A,B,h,β〉 whose
elements are defined as follows.

S = 〈S1, . . . , Sn〉 is ann-tuple of nonempty sets (oflocal
states). The state spaceof U is the set (ofglobal states) S =
∏n

i=1 Si.
I = 〈I1, . . . , In〉 is an n-tuple of nonempty sets (oflocal

initial states). The set ofglobal initial statesis I =
∏n

i=1 Ii.
A = 〈A1, . . . , An〉 is ann-tuple of nonempty sets (oflocal

actions). The set of global actions (i.e. n-tuples of local
actions) isA =

∏n
i=1 Ai. The set ofi-opponents actionsis

A−i =
∏n

j=1,j 6=i Ai.
B = 〈B1, . . . , Bn〉 is ann-tuple of functions s.t., for each

i ∈ [n], Bi : S × Ai × Si → B. Function Bi models
the transition relation of agent i, i.e. Bi(s, a, s′) is true iff
agent i can move from (global) states to (local) states′

via actiona. We requireBi to be serial (i.e. ∀s ∈ S ∃a ∈
Ai ∃s′ ∈ Si s.t. Bi(s, a, s′) holds) anddeterministic(i.e.
Bi(s, a, s′) ∧ Bi(s, a, s′′) impliess′ = s′′). We writeBi(s, a)
for ∃s′ Bi(s, a, s′). That is, Bi(s, a) holds iff action a is
allowed in states for agenti. For each agenti ∈ [n], function
Bi models theunderlying behaviorof agenti. That is, the set
of all possible choices ofrational player i. As a result,Bi

defines the transition relation for theByzantinebehavior for
agenti.

h = 〈h1, . . . , hn〉 is an n-tuple of functions s.t., for each
player i ∈ [n], hi : S × A → R. Function hi models
the payoff (reward) functionof player i. Note thath may
be seen as a functionh : S × A → R

n s.t. h(s,a) =
(h1(s,a), . . . , hn(s,a)) for all global statess ∈ S and global
actionsa ∈ A.

β = 〈β1, . . . , βn〉 is ann-tuple of discounts, that is of real
values such that for eachi ∈ [n], βi ∈ (0, 1).

Definition 2 (Mechanism):An n playermechanismM is a
pair (U ,T ) where: U = 〈S, I,A,B,h,β〉 is a mechanism
skeleton andT = 〈T1, . . . , Tn〉 is an n-tuple of functions
s.t., for eachi ∈ [n], Ti : S × Ai → B. We requireTi to
satisfy the following properties: 1)Ti(s, a) implies Bi(s, a);
2) (nonblocking) for each states ∈ S there exists an action

a ∈ Ai s.t. Ti(s, a) holds. FunctionTi models theproposed
protocolfor agenti, that is itsobedient(or altruistic, following
[1], [36]) behavior. More specifically, if agenti is altruistic
then its transition relation isBi(s, a, s′) ∧ Ti(s, a).

Often we denote ann player mechanismsM with the
tuple 〈S, I,A,T ,B,h,β〉. Furthermore we may also call
mechanism a mechanism skeleton. The context will always
make clear the intended meaning.

Remark 1 (Finite State Agents):In order to develop our
model checking algorithm we model each agent as aFinite
State Machine(FSM). This limits agent knowledge about
the past. In fact, the systemstate represents the system past
history. Since our systems are nonterminating ones, histories
(and thus agent knowledge) are in general unbounded. As
for verification of security protocols (e.g. see [43], [44])it
is the modeler responsibility to develop a suitable finite state
approximation of knowledge.

Definition 3: Let M = 〈S, I,A,T ,B,h,β〉, be an n

player mechanism andZ ⊆ [n]. Let BT : P([n]) × S × A ×
S → B be such thatBT (Z, s,a, s′) =

∧n
i=1 BTi(Z, s, ai, s

′
i),

where

BTi(Z, s, ai, s
′
i) =

{

Bi(s, ai, s
′
i) if i ∈ Z

Bi(s, ai, s
′
i) ∧ Ti(s, ai) otherwise.

BT models the transition relation of mechanismM, when
the set of Byzantine players isZ and all agents not inZ are
altruistic.

IV. A N EXAMPLE OF MECHANISM

In order to clarify our definitions we give an example of
a simple mechanism. Consider the situation in which a set
of agents cooperate to accomplish a certain job. The job, in
turn, consists ofn tasks. Each task is assigned to at least one
agent which may carry out the assigned task or may deviate
by not doing any work. Carrying out the assigned task entails
a cost (negative reward) for the agent. On the other hand,
if all tasks forming the job are completed (and thus the job
itself is completed) all agents that have worked to a task geta
reward greater than the cost incurred to carry out the assigned
task. If the job is not completed no agent gets anything. The
mechanism skeleton (Def. 1) is defined as follows.

All agents have the same discount, sayβ = 0.5, and the same
underlying (Byzantine) behavior, defined by the automatonBi

in Fig. 1. ²²
?>=<89:;2

reset

44?>=<89:;0
work

44

sleep
tt ?>=<89:;1

gain
tt

Fig. 1. Underlying behaviorBi for agenti.

From Fig. 1 we have:Si = {0, 1, 2}, Ii = {0}, Ai

= {reset, sleep, work, gain}. Let S = 〈S1, . . . , Sn〉, s =
〈s1, . . . , sn〉 ∈ S anda = 〈a1, . . . , an〉 ∈ A.

The mechanism skeleton isU = 〈S, I,A,B,h,β〉 where
the payoff functionhi for agenti is defined as follows:

hi(s, 〈a−i, work〉) = −1

hi(s, 〈a−i, sleep〉) = hi(s, 〈a−i, reset〉) = 0

hi(s, 〈a−i, gain〉) =

{

4 if (si = 1) for all i ∈ [n]

0 otherwise

3



The mechanism (Def. 2) isM = 〈S, I,A,T ,B,h,β〉.
where theproposed protocolTi for agenti requires agenti
to cooperate, that is to carry out the assigned task. Formally:
Ti(s, ai) = ((si = 0)∧(ai = work)) ∨ ((si = 1)∧(ai = gain))
∨ ((si = 2) ∧ (ai = reset)).

V. PATHS IN MECHANISMS

Let M = 〈S, I,A,T ,B,h,β〉 be ann player mechanism
and letZ ⊆ [n] be a set of (Byzantine) agents.

A path in (M, Z) (or simply a path when (M, Z)
is understood from the context) is a (finite or infinite) se-
quenceπ = s(0)a(0)s(1) . . . s(t)a(t)s(t + 1) . . . where, for
each t, s(t) is a global state,a(t) is a global action and
BT (Z, s(t),a(t), s(t + 1)) holds.

The length of a path is the number of global actions in a
path. We denote with|π| the lengthof pathπ. If π is infinite
we write |π| = ∞. Note that ifπ = s(0) then |π| = 0. Thus a
path of length 0 is not empty.

In order to extract thet-th global state and thet-th global
action from a given pathπ, we defineπ(s)(t) = s(t) and
π(a)(t) = a(t). To extract local actions, we denote with
π

(a)
i (t) the actionai(t) at staget of agenti and withπ

(a)
−i (t)

the actionsa−i(t) at staget of all agents buti.
For each agenti ∈ [n], the value of a pathπ is vi(π) =

∑|π|−1
t=0 βt

ihi

(

π(s)(t), π(a)(t)
)

. Note that for any pathπ and
agent i ∈ [n] the path value vi(π) is well defined also
when |π| = ∞ since the series

∑∞
t=0 βt

ihi

(

π(s)(t), π(a)(t)
)

converges for allβi ∈ (0, 1). Thepath value vectoris defined
as:v(π) = 〈v1(π), . . . , vn(π)〉.

A path π in (M, Z) is said to bei-altruistic if for all
t < |π|, Ti(π

(s)(t), π
(a)
i (t)) holds.

Given a pathπ and a nonnegative integerk ≤ |π| we denote
with π|k the prefix of π of lengthk, i.e. the finite pathπ|k =
s(0)a(0)s(1) . . . s(k) and withπ|k the tail of π, i.e. the path
π|k = s(k)a(k)s(k + 1) . . . s(t)a(t)s(t + 1) . . ..

We denote withPathk(s, Z) the set of all paths of length
k starting ats. Formally, Pathk(s, Z) = {π | π is a path in
(M, Z) and |π| = k andπ(s)(0) = s}.

We denote withPathk(s, f) the set of all paths of lengthk
feasible with respect to all sets of Byzantine agents of cardinal-
ity at mostf . Formally, Pathk(s, f) =

⋃

|Z|≤f Pathk(s, Z).
We write Pathk(s) for Pathk(s, n).

Unless otherwise stated in the following, we omit the
subscript or superscript horizon when it is∞. For example,
we write Path(s, Z) for Path∞(s, Z).

Note that ifi 6∈ Z, all paths inPathk(s, Z) arei-altruistic,
that is, agenti behaves accordingly to the proposed protocol.

VI. STRATEGIES

Let M = 〈S, I,A,T ,B,h,β〉 be ann player mechanism
and letZ ⊆ [n] be a set of (Byzantine) agents.

As usual in a game theoretic setting, we need to distinguish
player actions (i.e. local actions) from those of its opponents.
This leads to the notion of strategy.

A strategyσ is a (finite or infinite) sequence of local actions
for a given player. Thelength|σ| of σ is the number of actions
in σ (thus if |σ| = 0, the strategy is empty).

A strategyσ for player i agreeswith a pathπ (notation
π ≃i σ) if |σ| = |π| and for all t < |σ|, σ(t) = π

(a)
i (t).

Given a pathπ, the strategy (of length|π|) for player i

associated toπ is σ(π, i) = π
(a)
i (0)π

(a)
i (1) . . . π

(a)
i (t) . . ..

The set ofZ-feasible strategiesof lengthk for player i in
states is: Stratk(s, Z, i) = {σ(π, i) | π ∈ Pathk(s, Z)}.

The set off -feasible strategiesof length k for player i in
states is: Stratk(s, f, i) = {σ(π, i) | π ∈ Pathk(s, f)}.

As for paths, a strategyσ ∈ Stratk(s, Z, i) is said to be
i-altruistic if i 6∈ Z. We use the notationsσ |k and σ |k to
denote, respectively, thek-prefix and the tail afterk steps of
a strategy.

The set of paths that agree with a set of strategiesΣ for
an agenti is defined as follows.Path(s, Z, i,Σ) = {π ∈
Pathk(s, Z) | ∃σ ∈ Σ. k = |σ| ∧ π ≃i σ }. When Σ is
the singleton{σ}, we simply writePath(s, Z, i, σ).

The guaranteed outcome(or the value) of a strategyσ

in state s for player i is the minimum value of paths
that agree withσ. Formally: vi(Z, s, σ) = min{vi(π) | π ∈
Path(s, Z, i, σ)}

Thevalueof a states at horizonk for playeri is the guaran-
teed outcome of the best strategy of lengthk starting at states.
Formally: vk

i (Z, s) = max{vi(Z, s, σ) | σ ∈ Stratk(s, Z, i)}.
Theworst case valueof a states at horizonk for playeri is

the outcome of the worst strategy of lengthk starting at state
s. Formally,uk

i (Z, s) = min{vi(Z, s, σ)|σ ∈ Stratk(s, Z, i)}.
As usual, we will writevi(Z, s) for v∞

i (Z, s), andui(Z, s)
for u∞

i (Z, s).
The finite horizon value of a state can be effectively com-

puted by using a dynamic programming approach (Prop. 1).
This is one of the main ingredients of our verification algo-
rithm (Sect. IX). We omit proofs because of lack of space.

Proposition 1: Let M = 〈S, I,A,T ,B,h,β〉 be an n

player mechanism,i ∈ [n], Z ⊆ [n] and s ∈ S. The state
values at horizonk for player i can be computed as follows:

• v0
i (Z, s) = u0

i (Z, s) = 0;
• vk+1

i (Z, s) = maxai∈Ai
mina

−i∈A
−i

{hi(s, 〈a−i, ai〉)
+ βi vk

i (Z, s′) | BT (Z, s, 〈a−i, ai〉, s
′)}

• uk+1
i (Z, s) = minai∈Ai

mina
−i∈A

−i
{hi(s, 〈a−i, ai〉) +

βi uk
i (Z, s′) | BT (Z, s, 〈a−i, ai〉, s

′)}

VII. N ASH EQUILIBRIA IN MECHANISMS

Our notion ofNash equilibriumfor a mechanism combines
those in [23], [21]. Intuitively, a mechanismM is ε-f -Nash,
if as long as the number of Byzantine agents is no more than
f (e.g. see [21]), no rational agent has an interest greater than
ε (e.g. see [23], [26]) in deviating from the proposed protocol
in M.

Definition 4 (ε-f -Nash): Let M = 〈S, I,A,T ,B,h,β〉
be ann player mechanism,f ∈ {0, . . . , n} and ǫ > 0. M
is ε-f -Nash for playeri ∈ [n] if ∀Z ∈ Pf ([n] \ {i}), ∀s ∈ I,
ui(Z, s)+ε ≥ vi(Z∪{i}, s). M is ε-f -Nash if it isε-f -Nash
for each playeri ∈ [n].

Note that ε-0-Nash is theε-Nash equilibrium defined in
[23], [26]. Furthermore, stretching Def. 4 by settingε = 0,
we see that 0-f -Nash is thef -Nash equilibrium defined in
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[21] whereas 0-0-Nash is the classical Nash equilibrium (e.g.,
see [26]).

Observe that, for each agenti, we compare agenti best
reward when it considers deviating from the protocol (vi(Z ∪
{i}, s)), with agenti worst reward when it obeys the protocol
(ui(Z, s)). The reason for tolerating a small (ε) tolerance on
rewards when deviating from the proposed protocol in Def. 4
is that our aim is to verify Nash equilibria by looking only at
finite strategies. It is well known (e.g. see Sect. 4.8 of [26])
that ε-0-Nash equilibria have been introduced to get within a
finite horizon equilibria that are only available with an infinite
horizon. This means that a finite horizon may not suffice to
check that a mechanism is 0-0-Nash. The following example
aims at clarifying the above well known game-theoretical issue
framing it in our context.

Example 1:Let M be a one agent (named 1) mechanism
defined as follows. The underlying behaviorB1 for agent 1 is
shown in Fig. 2 where on the automaton edges we show action
names as well as payoff values since in this simple case the
payoff function depends only on local states and local actions
of the agent. The discount factor for agent 1 isβ1 = 1

2 . Let the
proposed protocolT of M be defined as follows:T1(s,a) =
((s = 0)∧ (a = a)) ∨ ((s = 1)∧ (a = d)) ∨ ((s = 2)∧ (a =
e)) ∨ (s ≥ 3). We focus on the casef = 0, that is there are
no Byzantine agents and henceZ = ∅. For allk > 0 we have:
uk

1(∅, 0) = −1 + 3
2

∑k−2
i=0 (− 1

2 )i=(−1)k 1
2k−1 (the protocolT

prescribes to follow the strategya(de)ω) and vk
1 ({1}, 0) =

1
2k−1 (v1 will use strategyσ1 = a(de)ω when k is even and
σ2 = c(gh)ω whenk is odd). Therefore, ifk is odduk

1(∅, 0) <

vk
1 ({1}, 0), and ifk is evenuk

1(∅, 0) = vk
1 ({1}, 0), Thus there

is no k̄ > 0 s.t. for all k ≥ k̄, uk
1(∅, 0) ≥ vk

1 ({1}, 0).

²²
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Fig. 2. Agent Behavior

Findingε-0-Nash equilibria even for finite horizon games is
not trivial (e.g. see [19]). As for infinite games, we note that
game-theory results focus on showing that anε small enough
can be found so that an infinite horizon 0-0-Nash equilibrium
becomes a finite horizonε-0-Nash one (e.g. see [26]). Our
concern here is different. We are givenε (fixed) and want to
verify if the given mechanism isε-0-Nash (actually,ε-f -Nash).

From Example 1 one may conjecture thatε-f -Nash (ε > 0)
equilibria can be verified by just looking atlong enoughfinite
horizons. Unfortunately this is not always the case as shown
by the following example.

Example 2:Consider again the mechanismM in Exam-
ple 1. Let theproposed protocolT of M be defined as follows:
T1(s,a) = ((s = 0) ∧ (a = b)) ∨ (s ≥ 1). Also in this case
we focus on the case in which there are no Byzantine agents,
that isf = 0 andZ = ∅. For all k > 0 we have:uk

1(∅, 0) =
∑k

i=1 −
1
2i = −1 + 1

2k andvk
1 ({1}, 0) = 1

2k−1 . For all k we
have:∆(k) = vk

1 ({1}, 0) − uk
1(∅, 0) = (1 + 1

2k ). Now, M is
clearly 1-0-Nash however there is nok̄ > 0 s.t. for all k ≥ k̄,

∆(k) ≤ 1. That is, there is no finite horizon that allows us to
conclude thatM is 1-0-Nash. Note, however, that for allδ > 0
there exists āk > 0 s.t. for allk ≥ k̄, ∆(k) ≤ 1+δ. Thus, for
all δ > 0, by just considering a suitable finite horizonk̄ > 0,
we can verify thatM is (1 + δ)-0-Nash.

VIII. V ERIFYING ε-f -NASH EQUILIBRIA

In this Section we give our main theorem (Theor. 2) on
which correctness of our verification algorithm (Sect. IX) rests.

Example 2 shows that, in general, using finite horizon ap-
proximations, we cannot verifyε-f -Nash equilibria. However
the very same example suggests that we may get arbitrarily
close to this result. This is indeed our main theorem.

Theorem 2 (Main Theorem):Let M =
〈S, I,A,T ,B,h,β〉 be an n player mechanism,
f ∈ {0, . . . , n}, ε > 0 and δ > 0. Furthermore, for
each agenti ∈ [n] let:

1) Mi = max{|hi(s,a)| | s ∈ S anda ∈ A}.
2) Ei(k) = 5 βk

i
Mi

1−βi

.
3) ∆i(k) = max{vk

i (Z ∪ {i}, s) − uk
i (Z, s) | s ∈ I, Z ∈

Pf ([n] \ {i})}
4) ε1(i, k) = ∆i(k) − 2Ei(k)
5) ε2(i, k) = ∆i(k) + 2Ei(k)

For each agenti, let ki be s.t.4Ei(ki) < δ. Then we have:

1) If for each i ∈ [n], ε ≥ ε2(i, ki) > 0 thenM is ε-f -
Nash.

2) If there existsi ∈ [n] s.t. 0 < ε ≤ ε1(i, ki) thenM is
not ε-f -Nash. Of course in such a case a fortioriM is
not 0-f -Nash.

3) If for eachi ∈ [n], ε1(i, ki) < ε and there existsj ∈ [n]
s.t. ε < ε2(j, kj) thenM is (ε + δ)-f -Nash.

Proof: Because of lack of space we omit the proof. See
[42] for the complete proof.

IX. ε-f -NASH VERIFICATION ALGORITHM

Resting on Prop. 1 and on Theor. 2, Algorithm 1 verifies
that a givenn agent mechanismM is ε-f -Nash.

In Algorithm 1, s anda are vectors (of boolean variables)
ranging respectively on (the boolean encoding of) states (S)
and actions (A).

The setZ of Byzantine agents in Algorithm 1 can also
be represented with a vector ofn boolean variablesb =
〈b1, . . . bn〉 such that for each agenti ∈ [n], agenti is Byzan-
tine iff bi = 1. Accordingly, the constraintZ ∈ Pf ([n] \ {i})

in Def. 4 becomes a constraint onb, namely:(
∑i=n

i=1 bi ≤ f

∧ bi = 0). Along the same lines, the setZ ∪ {i} (used
in Algorithm 1) can be represented with the boolean vector
b[bi := 1] obtained fromb by replacing variablebi in b with
the boolean constant1. For readability in Algorithm 1 we use
Z rather than its boolean representationb.

First of all, in line 3 of Algorithm 1, we compute the horizon
k needed for agenti to achieve the required accuracyδ.

Lines 4–11 use Prop. 1 to compute state values at horizon
k of states with the set of Byzantine playersZ when playeri
obeys the protocol (uk

i (Z, s)) as well as when playeri behaves
arbitrarily within the underlying behavior (vk

i (Z ∪ {i}, s)).
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Line 12 computes the max difference between initial state
values for a rational player and those for a player followingthe
proposed protocol, by also maximizing over allZ ∈ Pf ([n] \
{i}). (hypothesis 3 of Theor. 2, see also Def. 4). Line 13
computes the values in hypotheses 4 and 5 of Theor. 2.

Line 14 returnsFAIL as soon as the hypothesis of thesis 2
of Theor. 2 is satisfied. In such a case from Theor. 2 we know
that the given mechanism is notε-f -Nash and thus it is not
f -Nash.

Line 15 (16) returns,PASS withε (PASS withε + δ) when
the hypothesis of thesis 1 (3) of Theor. 2 is satisfied. In such
a case from Theor. 2 we know that the given mechanism is
ε-f -Nash ((ε + δ)-f -Nash).

Algorithm 1 Checking if a mechanism isε-f -Nash
1: CheckNash(mechanismM, int f , doubleε, δ)
2: for all i ∈ [n] do
3: Let k such that4 Ei(k) < δ

4: Let s ∈ S andZ ∈ Pf ([n] \ {i})
5: v0

i (Z, s) ← 0; u0
i (Z, s) ← 0;

6: for t = 1 to k do
7: vt

i(Z ∪ {i}, s) ← max
ai∈Ai

min
a

−i∈A
−i

[hi(s, 〈ai,a−i〉)+

8: +βiv
t−1
i (s′, Z ∪ {i})],

9: BT (Z ∪ {i}, s, 〈ai,a−i〉, s
′)

10: ut
i(Z, s) ← min

ai∈Ai

min
a

−i∈A
−i

[hi(s, 〈ai,a−i〉)+

11: +βiu
t−1
i (Z, s′)], BT (Z, s, 〈ai,a−i〉, s

′)
12: ∆i ← max{vk

i (Z ∪ {i}, s) − uk
i (Z, s) | s ∈ I, Z ∈

Pf ([n] \ {i})}
13: ε1(i) ← ∆i − 2Ei(k); ε2(i) ← ∆i + 2Ei(k)
14: if (ε < ε1(i)) return (FAIL)
15: if (∀i ∈ [n](ε2(i) < ε)) return (PASS withε)
16: else return (PASS with(ε + δ))

X. I MPLEMENTATION

We implemented Algorithm 1 within the NuSMV [46]
model checker. Here we briefly describe the main ideas
bridging the gap between Algorithm 1 and its NuSMV im-
plementation.

First of all, we extended the SMV language so as to be
able to define mechanisms. We should keep in mind that,
once we have verified that the proposed protocol is a Nash
equilibrium for the given mechanism, then we will undertakea
standard CTL verification in order to check that the proposed
protocol satisfies the desired safety and liveness properties.
Accordingly, we confined most of our extensions to the SMV
language inside SMV comments so that mechanism models
can also be used for standard CTL verification again with
NuSMV.

As a second step we implemented Algorithm 1 using
Ordered Binary Decision Diagrams(OBDDs) [10] resting on
the CUDD [18] OBDD package (which is also the one used
in NuSMV). Note that all functions in Algorithm 1 depend
only on boolean variables, namely those representing states,
actions and sets of Byzantine agents.

From Algorithm 1 we see that we only have two kinds
of functions: b2b functions, taking booleans and returning
a boolean value, andb2r functions, taking booleans and
returning a real value. As usualb2b functions can be ef-
fectively represented using OBDDs. As forb2r functions we
used theArithmetic Decision Diagrams(ADDs) available in
the CUDD package. ADDs are designed to represent and
efficiently manipulateb2r functions returning reals represented
asC 64 bit double. All arithmetical operations on ADDs used
in Algorithm 1 are available in the CUDD package. The only
ones that we had to implement ourselves were themax and
min functions on ADDs. We developed them with a suitable
traversal of the ADD to be minimized (or maximized). See
[42] for a full description of our symbolic implementation of
Algorithm 1.

XI. EXPERIMENTAL RESULTS

In order to assess effectiveness of our Nash verifier we
present experimental results on its usage on ann player mech-
anismM generalizing the mechanism presented in Section IV.
This is a meaningful and scalable case study that well serves
our purposes.

A. Mechanism Description

We are given a setJ = {0, . . . m− 1} of m jobs and a set
T = {0, . . . q−1} of q tasks. Functionη : J → P(T ) defines
for each jobj the set of tasksη(j) needed to completej.

Each agenti ∈ [n] is supposed to work (proposed protocol)
on a given sequence of (not necessarily distinct) tasksTi =
〈τ(i, 0), . . . τ(i, α(i) − 1)〉 starting fromτ(i, 0) and returning
to τ(i, 0) after taskτ(i, α(i) − 1) has been completed. An
agent maydeviate from the proposed protocol by delaying
execution of a task or by not executing the task at all. This
models many typical scenarios in cooperative services.

An agent incurs acost by working towards the completion
of its currently assigned task. Once an agent has completed a
task it waits for its reward (if any) before it considers working
to the next task in its list. As soon as an agent receives its
reward it considers working to the next task in its list.

A job is completed if for each task it needs, there exists at
least one agent that has completed that task. In such a case,
each of such agents receive areward. Note that even if two
(or more) agents have completed the same task, all of them
get a reward.

Agent i can be modeled as follows. Its set of states isXi

= Yi × Zi, where:Yi = {0, . . . (α(i)−1)} andZi = {0, 1, 2}.
State variableyi ranges onYi, state variablezi ranges onZi.

State variablezi models the working state of agenti.
Namely,zi = 0 if agenti is not working;zi = 1 if agenti has
done its assigned work (that is it has completed its currently
assigned task);zi = 2 if agent i currently completed task
has been used to complete a job. In the last case agenti gets
its reward for having completed a task used by a job. State
variableyi keeps track of the task currently assigned to agent
i. That is,yi = p iff agent i is supposed to complete task
τ(i, p) in its sequence of assigned tasks.
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Agent i’s set of initial states isIi = {(0, 0)} whereas agent
i’s set of actions isAi = {0, 1} with variableai ranging on it.
Variableai models agenti’s choices. Namely,ai = 1 if agent
i will work. and ai = 0 otherwise.

The state space ofM is S = 〈Y1, Z1, . . . Yn, Zn〉. The set
of initial states ofM is I = 〈I1, . . . In〉 We denote withs
the vector (of present state variables)〈y1, z1, . . . yn, zn〉 and
with a the vector (of action variables)〈a1, . . . an〉.

Let Φ(i) be the set of pairs (j, p) such that thep-th task of
agenti task sequence is needed for jobj. Formally, Φ(i) =
{(j, p) | (p ∈ {0, . . . α(i) − 1} ∧ (j ∈ J ) ∧ (τ(i, p) ∈ η(j))}.

Let Γ(t) be the set of pairs (w, r) such that ther-th task
of agentw task sequence ist. Formally,Γ(t) = {(w, r) | (w ∈
[n]) ∧ (r ∈ {0, . . . α(w) − 1}) ∧ (t = τ(w, r))}.

Let ϕj(s) be a boolean function which is true iff jobj is
completed. That is, if for each taskt in job j there exists an
agentw such thatw has completed taskt. Formally,ϕj(s) =
∧t∈η(j) ∨(w,r)∈Γ(t) ((yw = r) ∧ (zw = 1)).

Let γi(s) be a boolean function which is true iff agenti is
currently assigned to a task needed for a currently completed
job. Formally,γi(s) = (∨(j,p)∈Φ(i) ((yi = p) ∧ (ϕj(s))).

Finally, the underlying behaviorBi of agenti is defined as
follows: Bi(s, ai, yi’, zi’) =

((zi = 0) ∧ (ai = 0) ∧ (yi’ = yi) ∧ (zi’ = zi)) ∨
((zi = 0) ∧ (ai = 1) ∧ (yi’ = yi) ∧ (zi’ = 1)) ∨
((zi = 1) ∧ γi(s) ∧ (zi’ = 2) ∧ (yi’ = yi)))) ∨
((zi = 1) ∧ ¬γi(s) ∧ (zi’ = 1) ∧ (yi’ = yi)))) ∨
((zi = 2) ∧ (yi’ = (yi + 1) modα(i)) ∧ (zi’ = 0 )).

The proposed protocolTi for agenti is Ti(s, ai) = (ai = 1),
that is agenti is supposed to carry out the assigned task as
soon as it can. Rewardhi for agenti is defined as follows:

hi(s,ai) =











−1 if ((zi = 0) ∧ (ai = 1))

+4 if (zi = 2)

0 otherwise

B. Experimental Settings

In order to run our Nash verification experiments we in-
stantiate the above class of mechanisms as follows. First of
all, we take the number of agents (n) to be greater than or
equal to that of tasks (q). Second, we take the number of
jobs (m) to be equal to the number of tasks (q). Third, we
define η(j) (i.e. the set of tasks needed to complete jobj)
as follows: η(j) = {j, (j + 1) mod q}. That is, each job
requires two tasks and each task participates in two jobs.
We take as task sequence for agenti the sequenceTi =
〈(i − 1) modq, . . . q − 1, 0, . . . ((i − 1) modq) − 1〉. In other
words, all agents consider tasks with the same order (namely
〈0, . . . q− 1〉). The only difference is that agenti will start its
task sequence from task(i − 1) mod q. For each agenti we
set,βi = 0.5 andβ = 〈 β1, . . . βn 〉. With the above settings
we have only two parameters to be instantiated:n (number of
agents) andm (number of jobs).

C. Experimental Results

Table XI-C shows our experimental results on verification
of the ε-f -Nash property for the mechanism described in

Sects. XI-A, XI-B. ColumnByzantinesin Table XI-C gives
the number of Byzantine agents (f ). In all experiments we
takeε = 0.01 and accuracyδ = 0.005. With such settings the
value ofk in line 3 of Algorithm 1 turns out to be15 in all
our experiments. ColumnNashin Table XI-C shows the result
returned by Algorithm 1, namely,PASSif the mechanisms is
ε-f -Nash or(ε+ δ)-f -Nash,FAIL otherwise. The meaning of
the other columns in Table XI-C should be self-explicative.

From Table XI-C we see that we can effectively handle
moderate size mechanisms. Such mechanisms correspond in-
deed to quite large games. In fact, given a finite horizonk, an
n player mechanism can be seen as a game whose outcomes
aren-tuple 〈σ1, . . . , σn〉 of strategies of lengthk, whereσi is
the strategy played by agenti. If the underlying behavior of
agenti allows it two actions for each state, then there are2k

strategies available for agenti. This would yield a game whose
normal form has2kn entries. In the mechanism used in Table
XI-C, even without considering Byzantine players, each agent
can choose at least amongfib(k) (thek-th Fibonacci number)
strategies (many more if we consider Byzantine players). With
horizonk = 15 andn = 8 players this leads to a normal form
game with at leastfib(k)n = 6108 ≈ 1022 entries.

XII. C ONCLUSIONS

We present a symbolic model checking algorithm for verifi-
cation of Nash equilibria in finite state mechanisms modeling
MAD distributed systems. Our experimental results show the
effectiveness of the presented algorithm for moderate size
mechanisms. For example, we can handle mechanisms which
corresponding normal form games would have more than1022

entries.
Future research work include: improvements to the pre-

sented algorithm in order to handle larger mechanisms, veri-
fication of Nash equilibriarobustwith respect to agentcollu-
sions.
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