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Abstract. Given a communication network, we address the problem of
computing a lower bound to the transmission rate between two network
nodes notwithstanding the presence of an intelligent malicious attacker
with limited destructive power.

Formally, we are given a link capacitated network N with source node s
and destination node t and a budget B for the attacker.

We want to compute the Guaranteed Maximum Flow from s to ¢ when
an attacker can remove at most B edges. This problem is known to be
NP-hard for general networks.

For Internet-like networks we present an efficient ILP-based algorithm
coupled with instance transformation techniques that allow us to solve
the above problem for networks with more than 200 000 nodes and edges
within a few minutes. To the best of our knowledge this is the first time
that instances of this size for the above problem have been solved for
Internet-like networks.

1 Introduction

Given a communication network, especially an Internet sub-network, we are
often interested in analysing its vulnerability to intelligent malicious attacks,
consisting in removal (destruction) of network connections.

More specifically, given a communication network, we are interested in com-
puting a lower bound to the transmission rate between two network nodes (e.g.,
between a server and a router), notwithstanding the presence of a malicious at-
tacker. Such attacker has limited destructive power B, but is intelligent enough
to compute the maximum damage it can be provoked with B.

If, as usual, we model a communication network as a graph with edge capac-
ities, the above problem becomes that of computing the Guaranteed Maximum
Flow (GMF) when a malicious attacker can remove edges from the graph.

Of course, if an attacker can remove any number of edges, nothing can be
guaranteed, that is the GMF is just zero. However, fortunately, even malicious
attackers have a limited, possibly large, budget (e.g., destructive power). This
has motivated research on the computation of the GMF with a limited budget
for the attacker. We will refer to this problem as Network Interdiction Problem
(NIP) [34,39].

1.1 Motivations

Many networking problems can be cast as NIP (for a complete survey, we
refer the reader to [36]). For example, as for network security, the following



problems have been cast as NIPs: DOS attacks [2], DOS-resistant authentica-
tion [3], and insider threat analysis [8]. Vulnerability analysis of infrastructural
networks (such as electric power [9,24,26], water supply, critical infrastructure
networks [32], etc.) can also be cast as a NIP [33,12,4]. Finally, NIP plays a role
also in vulnerability-aware design of: communication networks [13], circuits [40],
operating systems [37], and infrastructural networks [35].

1.2 Contributions

Unfortunately, NIP has been shown to be an NP-complete problem [34,39]. Nev-
ertheless, many interesting NIPs can be solved casting NIP as an Integer Linear
Programming (ILP) problem [39].

Here we focus on analysing vulnerability of meaningful Internet sub-networks,
when some of their connections may be removed by an attacker. This entails
solving NIPs for networks with hundreds of thousands of edges.

We propose an ILP-based algorithm to solve very large instances of the NIP
which transforms the input instances in order to exploit the statistical structure
of Internet-like networks.

Our experimental results (Section 4) show that, thanks to our NIP instance
transformation techniques, our algorithm is able to analyse vulnerabilities of
networks consisting of around 200000 nodes in a few minutes. To the best of
our knowledge, none of the previously proposed methods for NIP can handle
Internet-like graphs of such size.

1.3 Paper outline

The paper is organised as follows. In Section 2 we give some preliminaries and
formally state our Network Interdiction Problem. In Section 3 we outline our
NIP instance transformation techniques which are the key enabler for the ef-
ficient vulnerability analysis of very large Internet-like networks using an ILP-
based approach, along the lines of [39]. In Section 4 we show the effectiveness of
our instance transformation techniques for the vulnerability analysis of realistic
Internet-like networks of very large size.

2 Preliminaries

In the following we denote with Rt and N the set of positive real and natural
numbers, respectively.

2.1 Capacitated networks

Here we recall the standard definitions of capacitated networks, flow, and max-
imum flow.

Definition 1 (Capacitated network). A directed [undirected] capacitated
network is a tuple N = (V, E, s,t,¢) where (V, E) is a directed [undirected] graph,
s,t € V (s #t) are, resp., the source and destination nodes and ¢ : E — R*
defines capacities of the links E. The capacity of a link (u,v) will be denoted by
c(u,v) or equivalently by cyy.



In the following we will use the shorter term network to refer to a capacitated
network as defined in Definition 1.

Definition 2 (Network flow). A flow in a network N = (V, E,s,t,c) is a
function f : E — RY s.t. V(i,5) € E f(i,j) < ¢j and, Vj € (V \ {s,t}),
EieVKi’j)eE f(iaj) = Ziev\(j,i)eE f(j,i)-

Definition 3 (Network flow value). The value of a flow f in a network
N =(V,E,s,t,c) is val(f) = Zvew(s,v)epj f(s,v) = ZveVl(v,t)eE f(v,t).

Definition 4 (Network maximum flow). The maximum flow of a network
N is MaxFlow(N) = max{val(f)|f is a flow in N}.

2.2 Network Interdiction Problem
Here we formally define the problem we are interested in.

Definition 5 (Network Interdiction Problem, NIP). A Network Interdic-
tion Problem (NIP) is a triple (N,B) where N = (V,E,s,t,c) is a network
(directed or undirected) and B is a positive integer number (attacker budget ).
An (N, B) attack is a map o from E to the set {0,1} s.t. 32, cpa(u,v) <
B. We denote with N|,, the network (V, E, s, t, ") where ¢/ (u,v) = (1—a(u, v))c(u,v).
A solution to the NIP (N, B) is an (N, B) attack « s.t., for all (N, B) attacks
B, MaxFlow(N|,) < MaxFlow(N|g).
If a is a solution to the NIP (N, B), we call MaxFlow(N|,) the Guaranteed
Mazimum Flow (GMF) of (N, B) (notation: GMF(N, B)).

In [39] it is proven that NIP is NP-hard. Various variants of the NIP have
been proposed, envisioning, for example, the possibility for an attacker to reduce
the capacity of edges (rather than destroying them completely), or different costs
to destroy different edges (see, e.g., [39,34]). In this paper, for space limitations
and ease of presentation we focus on the core version of the problem. However,
our approach can be generalised to most such variants.

2.3 An ILP formulation approach to NIP

Following the approach in [39], the NIP (N, B) for undirected networks N =
(V,E,s,t,c) can be formulated as the following Integer Linear Programming
(ILP) problem.

minimize E CuvYuv

(u,0)EE
subject to: z Zuv < B

(u,v)EE

Yuv + Zuv > du — do V(u,v) € E (1)

Yuv + Zuv > dy — dy V(u,v) € E

d; =0,d, =1,d, € {0,1} Yu € V\{s,t}

Yuv, 2uv € {0,1} V(u,v) € E



The main idea underneath such ILP problem is to compute a (s, t)-cut of N.
Namely, the cut is identified by decision variables d,, (with value 1 if u € V is in
the s partition and 0 otherwise) and vy, (with value 1 if edge (u,v) € E crosses
the cut and 0 otherwise).

Given this, the attack «, which is the solution to the instance of the NIP at
hand, is defined as a(u,v) = 2y, for all (u,v) € E, and the resulting GMF is
MaxFlow(N|,).

Note that, if the network N is directed, we just drop the set of constraints
(1), as in directed networks flow goes only from s to ¢.

3 An Efficient NIP Algorithm on Internet-like networks

A direct use of state-of-the-art Integer Linear Programming (ILP) solvers (e.g.,
GLPK, www.gnu.org/software/glpk, or CPLEX, www.ilog.com /products/cplex)
to perform network vulnerability analysis allows us to tackle input network
graphs consisting of at most a few tens of thousands of nodes. For very-large
networks, the main focus of this paper, this direct approach is unviable.

In this section we present proper instance transformation techniques aimed at
solving the Network Interdiction Problem (NIP) on very large network instances.

We point out that our goal is not to select classes of networks for which
NIP is polynomial, but rather to effectively solve the NIP for the class of net-
works of our interest, i.e., Internet-like networks. In particular, Internet-like
networks typically do not fall in the classes of networks for which NIP is known
to be polynomial, see, e.g., [34]. Hence, our approach is much in the spirit with
which Mixed Integer Linear Programming (MILP) and ILP solvers (see, e.g.,
[14,28,15]), model checkers (see, e.g., [5,17,20,21,27,23,22,38,18,25]), controllers
synthesizers (see, e.g., [1,6,19,29]), local search—based (see, e.g., [10,31,16]), SAT
and SMT solvers (see, e.g., [30]) are built and exploited to solve large problem
instances. Of course, being our problem NP-hard, our approach (if P # NP) will
still result in an exponential algorithm in the worst case. However, experimental
results in Section 4 undoubtedly show that, by applying the instance transfor-
mation techniques outline next, off-the-shelf ILP solvers can be made able to
perform vulnerability analysis of networks with 200 000 nodes in a just a few of
minutes, with dramatic scalability improvements and huge speedups wrt. to a
direct ILP encoding.

3.1 Structure of Internet-like networks

An Internet-like network is a network with a structure similar to the Internet
graphs. In such networks, the distribution of node out-degrees (i.e., the numbers
of outgoing edges per node) is widely dispersed around the average value, in
that most of the nodes have an out-degree much smaller than the average out-
degree, and a few nodes (hubs) have an out-degree much larger than the average
out-degree.
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Our algorithm applies, in the given order, the following three network trans-
formations to the input NIP instance. Such transformations are inspired to gen-
eral networks processing techniques (see, e.g., [7]), but have been carefully chosen
and adapted to exploit the typical structure of Internet-like networks.

3.2 Phase 1: connected component selection

Given a NIP instance (N, B) over network N = (V,E,s,t,c), our first step
transforms it in (N’, B), where the new network N’ = (V' E’ s,t,c) is the
single connected component of N containing both the source node s and the
destination node ¢, and ¢(u,v) = ¢(u,v) for (u,v) € E'.

Of course, in case s and ¢ belong to two different connected components of N,
the problem answer can be immediately computed, as the network Guaranteed
Maximum Flow (GMF) is just zero.

3.3 Phase 2: detour elimination

Our second instance transformation step removes all detour edges, i.e., edges
which are only contained in cycles.

Formally, given our NIP instance (N’, B) (as computed by the previous trans-
formation step) with N’ = (V' E', s,t,c’), we transform it in (N”, B), where
network N = (V" E" s,t,c¢"), with V" induced by E”, ¢'(u,v) = ¢/(u,v) for
(u,v) € E" and:

E" = {(u,v) €L

exists a (s,t)-path in N” which
is not a cycle and contains edge (u,v) [

3.4 Phase 3: chains compaction

Our third and final transformation step focuses on maximal chains, i.e., on the
C-maximal non-singleton sets of nodes {v1,...,v.} € V” (r > 3) of network
N" such that, for each 1 < i < 7, (v;,v,41) € E” and, for each 1 < i < r
the out-degree of node v; in N is 1. Our algorithm transforms network N’
by compacting each C-maximal chain C' = {vy,...,v,} € V" in a single edge
(’Uj(c),vj(c)+1), being 7(C) € {1, e, T — 1} s.t. (Uj(c),’l}j(c)Jrl) is the edge with
the minimum capacity of all the edges in the removed chain and j(C) is the
minimum index with such property (in case the minimum is attained in more
than one edge of the chain).

More formally, the compacted network N = (V"' E" s,t,¢"") is such that
V" is induced by E", "' (u,v) = ¢’ (u,v) for (u,v) € E"” and:

E" = (E" \ {(vi,v;41) € E" | exists a C-maximal chain C = {vy,...,v,.} C V",
1<i<ri#j(0)})

U{(v,vj(¢)) | exists a C-max. chain C' = {vy,...,v.} C V" (v,v1) € E"}

U{(vj(cy,v) | exists a C-max. chain C = {vy,...,v.} C V" (v,,v) € E"}

Our problem instance (N”, B) (output of the previous phase) is transformed
into (N, B).



Applying the above sequence of transformations to the input instance (N, B)
at hand results in a new problem instance (N, B). The following result shows
that from a (optimal) solution for the latter we can efficiently compute (in linear
time in the network size) a (optimal) solution to the former (proof omitted for
lack of space).

Theorem 1. Let (N, B) be an instance of a NIP, with N = (V, E, s,t,c). More-
over, let (N, B) be the NIP instance computed by applying the three transfor-
mations above to (N, B), with N = (V"' E" s, t,c").

Let a be a (optimal) solution to (N, B). Then, 8(u,v) = a(u,v) if (u,v) €
E" else 0 is a (optimal) solution to (N, B).

Summing up, our instance transformation techniques allow us to solve a
NIP instance (N, B) by reducing it to (N, B), by solving it through the ILP of
Section 2.2, and by efficiently computing back an optimal solution to the original
problem from the optimal solution computed for the latter.

4 Experiments

In order to assess effectiveness of the Network Interdiction Problem (NIP) in-
stance transformation techniques of Section 3, below we report the experimental
results obtained on very large sub-networks of the Internet. Our goal is to assess
the marginal impact of our instance transformation techniques on the perfor-
mance of an off-the-shelf Integer Linear Programming (ILP) solver.

All our experiments have been run on a 3GHz Intel Xeon QuadCore Linux
PC with 8GB of RAM. Our instance transformation algorithms have been imple-
mented in C. Our ILP solver is the well-known GLPK (www.gnu.org/software /glpk).

4.1 Defining NIP benchmark instances

Our first step is to generate realistic Internet-like networks of various sizes to
be used as instances for our experiments. We started from an Internet snapshot
G downloaded from [11]. Although G is a directed graph, for the aims of our
experiments, we read edges of G as undirected (i.e., bidirectional) edges.

Starting from G, we generated 20 sub-graphs G. (where e € [1,20]) by ran-
domly removing from G 20 given numbers of edges. Figure 1 shows statistical
properties of our generated instances: for each graph, the figure shows its num-
ber of nodes and edges. Note that, for each i € [1,19], graph G;4+1 has both a
higher number of nodes and a higher number of edges than graph G;.

The step above only defines nodes and edges for our graphs. In order to
translate them in networks, we have to define, for each graph, the edges capacity
function ¢ and the source and destination nodes s, t. As for ¢, we define ¢(u,v) to
be proportional to the degree of u (deg(u)) and v (deg(v)). More specifically, for
each graph, we set c(u,v) = 1000%, where maxdeg is the maximum
degree of a node in the graph. As for s and ¢, we randomly choose two distinct
nodes among those having maximum degree in each graph.

As a result, we obtain 20 NIP instances. For each instance, value for B,
defining the maximum number of links that the attacker can destroy (the attacker
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Fig. 1: Number of nodes and edges for our graphs Gy, ..., Ggp.

budget), has been fixed fixed to the largest value for which the Guaranteed
Maximum Flow (GMF) is greater than zero, thus placing us in the worst case
(where the attacker has maximum freedom).

4.2 Experimental results

We are now ready to assess the marginal impact of our instance transformation
techniques on the performance of the GLPK ILP solver.

We solved each instance both by directly running the ILP problem defined in
Section 2.2 (we call it the Direct NIP, dir-NIP, approach) and by first transform-
ing the instance using our algorithm and then solving the ILP problem on the
transformed instance (we call it the Transformed NIP, trans-NIP, approach).

For our comparisons we will focus on computation time, as memory require-
ments are always low (maximum 1GB of RAM). Furthermore, as in our networks
the number of edges is nearly linear in the number of nodes (Figure 1), we will
measure computation times as a function of the number of network nodes only.

Figure 2a shows the dramatic improvements that are consistently obtained
by our approach (on all instances) based on applying the transformations of
Section 3 before running our off-the-shelf ILP solver (trans-NIP). In the figure,
the = axis shows the number of nodes of the networks G1, ..., Gy of Figure 1,
and the y axis shows (in a logarithmic scale) the CPU computation time for
trans-NIP and dir-NIP on each network.

Note that trans-NIP succeeds in completing the analysis and computing the
GMF for all networks in our dataset in just a few minutes. On the contrary, dir-
NIP only succeeds in computing (in times which are up to 2 orders of magnitude
longer than those of trans-NIP) the GMF for networks Gy, ..., Gs, which all
have less than 100 000 nodes. On larger networks, GLPK did not even terminate
after 24 hours (our timeout).

Note that, while CPU times for dir-NIP are just ILP solving times, CPU times
for trans-NIP include both instance transformation and ILP solving times on the
transformed networks. To assess the impact of our instance transformations in
the overall trans-NIP computation time, Figure 2b shows a breakdown (for each
instance) of the total trans-NIP solving time into instance transformation and
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are drawn as functions of the number of nodes of our benchmark networks.

ILP solving time. The figure reveals that instance transformation indeed takes
negligible time wrt. ILP solving.

Finally, Figure 2c shows the average speedup of trans-NIP wrt. dir-NIP on
each network solved by both approaches (i.e., G1,...,Gg). From the figure, we
see that the speedups achieved by trans-NIP grow almost linearly with the num-
ber of nodes of the graph. Namely, the average speedup is at least 10x (for
network G1) and at most 190x (for network Gg), with an average of approxi-
mately 90x. This shows the feasibility and effectiveness of our approach on large
and realistic Internet-like networks.

5 Conclusions

In this paper we focused on the Network Interdiction Problem (NIP) and pre-
sented effective instance transformation techniques to compute the Guaranteed
Maximum Flow (GMF) of very large meaningful Internet-like networks, when
an intelligent malicious attacker with limited resources tries to destroy network
edges. Namely, our methodology adds suitable network transformations explic-
itly tailored to Internet-like networks to standard Integer Linear Programming
(ILP)-based algorithms. Our experimental results show that our instance trans-
formations are able to enable off-the-shelf ILP solvers (GLPK) to successfully
analyse vulnerabilities of Internet sub-networks consisting of 200000 nodes in
just a few minutes, whilst a direct ILP application does not scale beyond around
100000 nodes. In all our test cases, our methodology enables much faster analy-
sis. In particular, on small networks, speedup wrt. direct ILP solving is at least
10x, growing up to 190x on the largest tested portions of Internet snapshots
(consisting of around 200000 nodes and 300000 edges). On average, our algo-
rithm is 90x faster than direct ILP solving. This shows the effectiveness of our
approach.

Our instance transformation techniques are explicitly designed to exploit the
statistical properties of Internet-like networks and might not by so effective on
networks with a very different statistical structure. Finally, although we ad-
dressed the core version of the problem, our techniques can be generalised to
most of the existing problem extensions and variants, as they mostly focus on
the network structure.
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