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Abstract—Model Based Design approaches for embedded sys-
tems aim at generating correct-by-construction control software,
guaranteeing that the closed loop system (controller and plant)
meets given system level formal specifications.This technical note
addresses control synthesis for safety and reachability properties
of possibly non-linear discrete time hybrid systems. By means of a
syntactical transformations that requires non-linear terms to be
Lipschitz continuous functions,we over-approximate non-linear
dynamics with a linear system whose controllers are guaranteed
to be controllers of the original system.We evaluate performance
of our approach on meaningful control synthesis benchmarks,
also comparing it to a state-of-the-art tool.

I. INTRODUCTION

Many embedded systems are indeed Software Based Con-
trol Systems (SBCSs).A SBCS consists of two main sub-
systems:the controller and the plant.The controller typically
consists of control software that, at discrete time instants,
reads sensor outputs from the plant and sends commands to
plant actuators in order to guarantee that the closed loop sys-
tem meets given system level formal specifications.Software
generation from modelsand formal specifications forms the
core ofModel Based Design of embedded software [21].This
approach is particularly interesting for SBCSssince in such a
case specifications are much easierto define than the control
software itself. The long term goal is to generate correct-by-
construction control software from the plant model (as a hybrid
system) and from formal specifications for the closed loop
system behaviour. Following this approach, several effective
tools and techniques for control software synthesis have been
introduced for linear and piecewise affine hybrid systems.
Here, we address control synthesis for discrete time, hybrid,
non-linear systems, as defined in [2]. Synthesised controllers
are correct-by-construction with respect to some safety and
reachability specifications of the closed loop system behaviour.
Our results apply to continuous time systems on the basis
of a right choice of the time discretisation step. This choice
depends on upper bounds of errors in computing numeri-
cal solutions to Differential Algebraic Equations (DAE) (see
e.g. [6]). In particular, as in the context of hybrid systems
simulation, the time step must ensure that the solver deals
properly with mode jumps [37].

a) Contributions: In this technical note, we present an
automatic procedure (implemented in a publicly available soft-
ware tool)that over-approximates (i.e., possibly allowing more
behaviours than) a non-linear discrete time hybrid system H
by means of a piecewise affine system L4, such that controllers
for £, are guaranteed to be controllers for H. Control soft-
ware for 7 is thus obtained by giving the plant model L4 as
input to a tool dealing with piecewise affine systems (such
as [7], [26]). The system L4 is automatically computed from

The authors are with the Computer Science Department, Sapienza Univer-
sity of Rome, Via Salaria 113, 00198 Roma, Italy.

H by syntactically transforming the transition relation Nof
H into a transition relation N containing linear constraints
only. We eliminate each non-linear function occurring in NV
in two independent steps: 1) we under- and over- approximate
each non-linear sub-term f of N by means of piecewise affine
functions f~, f, such that for all = in a bounded domain D,
f~(z) < f(x) < f(x),2) every occurrence of f(z) in N
is then syntactically substituted by constraints satisfied by all
values in the interval [f~(z), fT(z)]. Our linearisation algo-
rithm finds arbitrarily precise approximations of a non-linear
Lipschitz continuous function f: for all € it yields as output
=, fT such that for all z in D, |f*(z)—f~ ()] is less than or
equal to €. The price to pay in this over-approximation is the
increasing of nondeterminism in the system behaviour. Even
though our transformation in the worst case is exponential in
the number of variables occurring in a non-linear subterm,
it comes out to be effective in practical cases, as it can be
applied to all non-linear sub-terms separately, and usually,
such sub-terms involve a small number of variables.We finally
demonstrate, on the inverted pendulum benchmark, feasibility
of our approach and we compare its performances to the tool
Pessoa [29]].

b) Related Work: This work extends [2], in which it
is assumed that over-approximations of non-linear sub-terms
have to be provided by the user. Over-approximations of non-
linear hybrid systems with linear hybrid systems have been
considered in [19], [17]. Such works focus on verification
rather than control synthesis. Our linearisation algorithm is
in the same spirit of interval analysis [1] and global optimisa-
tion [22]. To limit non-determinism arising from system lin-
earisation andthe number of segments of over-approximating
functions, we follow an approach based on LP optimisation
and piecewise affine functions. Building on [28], this work
provides automatic control synthesis for Discrete Time Hybrid
Systems (DTHSs). We can classify dynamical systems with
respect to their time model (discrete or continuous), dynamics
(linear, piecewise affine, non-linear), or hybrid class (non-
hybrid, switched, or hybrid with inter-sampling mode jumps).
With respect to dynamics, DTHSs extends Discrete Time
Linear Hybrid Systems. Control synthesis for non-hybrid non-
linear systems (discrete [23]] or continuous time [33]]) has been
investigated for a long time in Control Engineering. Verifica-
tion and control synthesis for timed and linear hybrid automata
has been widely investigated (see e.g. [, [1S8], [20], [40],
[LO], [9]).Control synthesis forpiecewise affine discrete time
hybrid systems has been investigated in [41], [7], [8].More
recently, abstraction based control synthesis has become a
popular and fruitful research area [38], [29], [28]. Focusing
on switched (or sampled) systems,several control synthesis
procedure has been devised [[15], [39]], [25]. These works have
been extended to the non-linear case, usually stemming from



some linearisation or hybridisation technique [14], [42], [34],
[12]. Focusing on switched systems (both in continuous and
discrete time models), further techniques have been devised
to make synthesised controllers guarantee some non-functional
requirement of the closed-loop system, such as optimality with
respect to some cost function[30]], [36], [13], [35], [3], or
controller robustness [14], [24]], [16].Our work is motivated
by the fact that such works do not handle systems that are
at the same time non-linear and hybrid, as it is the case of
DTHS:s.

II. BACKGROUND

We denote with [n] an initial segment {1,...,n} of the
natural numbers.We denote with X = [z1,...,xz,] a finite
sequence of distinct variables,that we may regard, when
convenient, as a set.Each variable z ranges on a known
bounded interval D, either ofreals (continuous variables) or of
the integers (discrete variables).Boolean variables are discrete
variables ranging on the set B = {0, 1}.We denote with Dx
the set [ [, v D..A lower case letter x can also denote a vector
of n values x1,...,x,. We use |z| to denote the euclidean
norm of z. For a matrix = of size n X m, z; denotes the
it" row of z, i.e. the vector Til,-..,%im.-Along the same
lines, a hyperinterval [aq,b1] X [az,b2] X ... X [an,b,] CR"
will be denoted just by [a,b], where a = ay,as,...,a, and
b=by,by,...,b,. As usual, if a,b € R" and A € R, a+ b
will denote ay + by,...,a, + by, Aa denotes Aai, ..., Aan,,
and |[a, b]| its diameter |b — a|.If z is a n X m matrix and y
isapxm matrix, z =z @y is a (n + p) X m matrix, such
that z; = x; if 1 <i<n,and z; =y; forn+1 <1< n+p.
A function f : D — R is Lipschitz continuous if there exists
A € R such that for all z,y € D, |f(z) — f(y)] < Az —y].

a) Predicates: An expression E(X) over a set of vari-
ables X is an expression of theform }, ., a;fi(X), where
fi(X) are possibly non-linearfunctions in which all variables
occurring in f belong to X and a; are rational constants.For
example 3sinz, x¥, x are expressions over{z,y}.Our notion
of linearity is merely syntactical: for us = is a linear
expression, whilex + sinx — sinx is not, even though they
“semantically” denote thesame function.F(X) is a linear
expression if it is a linear combination of variables, that is
E(X) = ) e @iwi-A constraint is an inequality of the
form FE(X) < b, where b is arational constant. We will
writeE(X) > b for —E(X) < —=b,E(X) = b for (E(X) <
b) N(E(X) > b)and a < & < b for (z > a) A (z < b).A
constraint is linear if E(X) is a linear expression.A predicate
(resp. linear predicate) is a boolean formula with constraints
(resp. linear constraints) as atoms.A conjunctive predicate is
a conjunction of constraints. Given a constraint C'(X) and a
boolean variable y ¢ X, theguarded constraint y — C(X) (if
y then C(X)) denotes thepredicate (y = 0) V C(X).Similarly,
g — C(X) denotes (y = 1) V C(X).A guarded predicate
is a conjunction of either constraints or guardedconstraints.A
valuation over a list of variables X is a function v that
maps eachvariable € X to a value v(z) € D,.Given
a valuation v, we denote with 2* € Dx the sequenceof
values [v(z1),v(x2),...,v(x,)].By abuse of language, we call
valuation (or assignment) also the sequence of values z*.

b) Control Problem for a Labeled Transition System: A
Labeled Transition System (LTS) is a tuple S = (S, A,T)
whereS is a set of states,A is a set of actions,and T :
S x A x S — Bis the transition relation of S.Let s€ .S and
a€ A.The setAdm(S, s) = {a € A| 3¢’ : T(s,a, s') }is the set
of admissible actions in s.The LTS § is said non-blocking if
for each state s and action a, there exists a successor state
s’ € S such that T(s,a,s’).A run or path for an LTS S
is a sequencem = Sg,ag, S1,01,S2,02,... of states s; and
actionsa; such that V¢ > 0 T(st,as, s¢+1)-The length ||
of a finite run 7 is the number of actions in 7.We denote
with 7; the state s;. Given two LTSsS; = (S, A,T;) and
Sy = (S, A, To)we say that So over-approximates S(notation
S1 C So) whenT (s, a, ") implies T5(s,a, s’) for all 5,8’ € S
and a € A.In what follows, let S = (S, A,T) be an LTS,
G C I C Sbe, respectively, the goal and the initial regions
of S.A controller restricts the dynamics of an LTS so that
all states in the initial region I will eventually reach the goal
region G. We formalize controllers as solutions to an LTS
controlproblem.A controller for S is a functionK : SxA — B
such that Vs € S, Va € Aif K(s,a) then 3s’ T(s,a,s’).The
set dom(K) ={s€ S|3Ja € AK(s,a)} is the set ofstates
for which at least a control action is enabled.The closed loop
system SU) is theLTS (S, A, 7)) where T (s,a,s') =
T(s,a,s") N K(s,a).We call a path 7 fullpath if either it
is infinite or its last statehas no successors.We denote with
Path(s,a) the set of fullpaths starting in state swith action
a.Given a path 7 in S, we define j(S,w, G) asfollows.If
there exists n > 0 such that 7, € G, thenj(S,m,G) =
min{n | n > 0 A 7, € G}.Otherwise, j(S,m,G) = +0o0.We
require n > (0 since systems are non-terminating and each
controllable state(including a goal state) must have a path of
positive length to a goal state.Taking sup @ = +oco the worst
case distance of a states from the goal region G isJ (S, G, s) =
sup{j(S,7,G) | Ja € Adm(S, s), 7 € Path(s,a)}.A control
problem for S is a tripleP = (S,1,G).A solution to P is
a controller K for S suchthat I/ C dom(K) and for all
s € dom(K),J (S5, G, s) is finite.

III. DISCRETE TIME HYBRID SYSTEMS

Discrete Time Hybrid Systems (DTHSs) is a class of
hybrid systems whose discrete time dynamics is defined by
a predicate N over state variables, input variables (that model
controllable inputs), and auxiliary variables (that model un-
controllable inputs, i.e. disturbances).

Definition 1. A Discrete Time Hybrid System is a tuple H =
(X,U,Y,N) where:

o X is a finite sequence of real and discretepresent state
variables.The sequence X' of next state variables is
obtained by decoratingwith ' all variables in X.

o U is a finite sequence of input variables.

o Y is a finite sequence of auxiliary variables.

o N(X,U,Y, X') is a predicate over XUUUY UX'defining
the transition relation of the system.

The semantics of a DTHS H is given in terms of the la-
belledtransition systemLTS(H) = (Dx,Dy,N),where:N :
Dx x Dy x Dx — Bis a predicate such thatN (x,u,x") holds



if and only if 3y € Dy N(x,u,y,x’).We say that Discrete
Time Hybrid System (DTHS) Ho over-approximates DTHSH,
whenLTS(H1) C LTS(Hz).

The class of Discrete Time Linear Hybrid Systems
(DTLHSs) is the subclass of DTHSsobtained by imposing
N to be a linear predicate. In [27] DTLHSs have been
proved to be expressive enough to faithfully encode the
dynamics of continuous time Rectangular Hybrid Automata.
Our abstraction procedure relies on MILP solvers, that require
conjunctive predicates as input. If all variables in X range
over a bounded domain, then each linear predicate can be
transformed into an equisatisfiable guarded predicate and then
into a conjunctive predicate [28]. As a consequence, we
consider linear predicates as modelling language for DTLHSs.

A. From Continuous Models to DTHSs

The transition relation of a DTHS can approximate the dy-
namics of a continuous time system by considering a fixed step
numerical integration method (explicit or implicit). Our formal
guarantees depend on upper bounds to errors arising from time
discretisation.As an example, if plant dynamics is defined by
an ODE system of the form & = f(z,u), f is Lipschitz
continuous, and assuming u constant in a time interval T,
by applying Taylor expansion, we can over-approximate the
plant continuous time dynamics by means of a predicate IV
of the form 2’ = z + f(z,u)T +d A |d| < 372, where X is
a Lipschitz constant for f and d is an auxiliary variable. If
plant dynamics is defined by a DAE, as it is often the case
for hybrid systems, in general it could be far from trivial to
find such an over-approximation. Several techniques, mainly
based on index-reduction, have been devised to solve specific
families of DAESs, providing useful upper-bounds on the time
discretisation errors(see, e.g. [6, Chapter 10]).The controller
sampling time T (that is usually a design requirement) is
typically greater than the time step 7. We can always choose
7 in such a way that T' = ¢7, for some ¢ € N. Building
on this, the dynamics of a system with sampling timeT
can be approximated by iterating ¢ times the transition re-
lation N,. We consider the transitionrelation N!(X,U, X') =
IXO L XO A éN (X0, U, XDy A X = XO) A
X = X(t) being X, ..., X® sets of Varlables not oc-
curring in N.. The predicate Nﬁ (z,u,z") holds if, by holding
action u fort transitions of step 7, the system goes from x
to z’, without violating any constraint on its dynamics. This
allowsus to have a sampling time 7', while retaining model
accuracy ensured by a time step 7.

Example 1. Let us consider the ideal inverted pendulum in
Fig. |I} with fixed pivot point where a massless but rigid rod
with length | drives a particle with mass m in a rotational
motion (we call the angle 6 which origin is in the upright
position). The pivot point is subject to different friction forces,
depending on the rod being below or above the pivot centre,
e.g. due to different material deterioration. We assume friction
to be linear w.r.t. to angular velocity with coefficient 111 above
and o below (u1 # o). Besides gravitational acceleration
g, the pendulum is subject to a torquing force u applied to its

pivot point, that can influence its velocity in both directions.
Eq. 1| shows the equation of motion for pendulum in Fig.
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Fig. 1: Inverted Pendulum with Different Frictions.
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where 1 is 1 (resp. 2) when the rod is above (resp. below) its
pivot centre.By introducing continuous variables 1 for angle
0 and x5 for angular velocity 6, we obtain a state space
representation equivalent to Eq. (1), defined by first order
ODEs in Eq. @) (i € {1,2}).
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Eq. subsumes two different dynamics due to different
friction forces below or above its pivot centre. For this reason,
we model it as a hybrid system with two modes.

Example 2. Our experimental evaluation considers the dis-
crete time model obtained from the pendulum system in Ex. [I]
by applying Euler approximation with time step T to Eq. (2). We
introduce the boolean variable a for distinguishing between
two modes: a = 1 (resp. a = 0) means that the pendulum
is above (resp. below) its pivot centre. We exploit sinus
periodicity by introducing aninteger variable ¢ € {—1,0,1}
and normalise angle x1 in the range [—m,w|. The DTHS
model H for the pendulum is the tuple (X,U,Y, N)where
X = {x1,x2} is the set of continuous state variables,U = {u}
is the set of input variables, and Y = {a,q} is the set
of auxiliary variables.Differently from [23|], we consider the
problem of finding a discretecontroller, whose decisions may
be “apply the force clockwise” (v = 1), “apply the force coun-
terclockwise” (v = —1), or “do nothing” (u = 0).Torquing
intensity is given as a constant F.Finally, the discrete time
transition relation N is the guarded predicate in Eq. (3).Note
that when ©1 € {—n/2,7/2}, the transition relation Ncan
nondeterministically hit both dynamics (above and below),
thus adding more admissible behaviours w.rt. the original
system. This is a safe approach, since a controller for this over-
approximation is a fortiori also a controller for the original
system.
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B. Quantized Control Problem for DTHSs

A DTHS control problem P = (H,I,G) is defined as the
LTScontrol problem (LTS(#), I, G). The closed loop system
is guaranteed to reach G from all initial states, thus we
essentially solve what is called a reachability game in [38|
Chapter 6]. For the sake of simplicity, we do not explicitly
consider here safety properties in control problem specifica-
tions, as we did in [4]. However, they can be encoded in
the transition relation N of H, as forbidden transitions to
unsafe states. We search solutions to P among quantized
controllers (see e.g. [11]). A control problem admits quantized
solutions if control decisions can bemade by just looking at
quantized values.This enables a software implementation for
a controller.A quantization function v for a real or integer
interval I = [a,b] is anon-decreasing function v : I — Z,
such that y(I) is abounded integer interval.Given a DTHS
H = (X,U,Y,N), a quantization T isa set of quantization
functions I' = {7y, | w € XUU}LIF W = [wy,...,wg] is a
list of variables andv = [vy, ..., vx] € Dw, we write I'(v) for
thetuple ['le (Ul)v <oy Yws (vk)]'

Example 3. In our experiments we use uniform quantization
functions dividing the domainof each state variable D,, =
[—1.17, 1.17] (we writew for a rational approximation of it)
and D, = [—4,4]into 2 equal intervals, where b is the num-
ber of bits used by Analog-to-Digital (AD)conversion.Since we
have two quantized variables, each one with b bits, the number
ofquantized states is exactly 22°.

Definition 2. Let H = (X,U,Y,N) be a DTHS, T be
quantization forH and P = (H,I,G) be a DTHS control-
problem.A T' Quantized Feedback Control (QFC) solution
to P is a solution K(x,u) toP such that there existsK :
I(Dx) x T(Dy) — Bsuch that K (z,u) = K (D(z),T(u)).
Example 4. The typical goal for the inverted pendulum in
Ex. 2] is toturn the pendulum steady to the upright position,
starting from any possibleinitial position, within a given speed
interval.In our experiments, the goal region is defined by
the predicateG(X) = (—p < 21 < p) A (—p < 23 <
p),where p = 0.1,and the initial region is defined by the
predicate] (X)) = (—m <z <) A (-4 < z9 < 4).

IV. LINEAR OVER-APPROXIMATION OF DTHSSs

A DTHS control problem can be reduced to a Discrete Time
Linear Hybrid System (DTLHS) control problem, by over-
approximating the dynamics of H with the dynamics of a
DTLHS L. We present here a fully automatic procedure
that syntactically transforms the predicate that defines the
transition relation of H into a linear predicate, in such a
way that £, over-approximates 7{.This property is the key
ingredient of Corollary 4] which ensures that solutions to the
control problem (Ly;,I,G) are guaranteed to be solutions
to the originalcontrol problem (7, I, G).Our procedure over-
approximates a Lipschitz continuous non-linear function with
a pair of piecewise linear functions. Then we lift this over-
approximation to constraints and finally to the predicate that
defines the transition relation of a DTHS.

A. Linear Over-approximation of a Non-Linear Function

The building block of our transformation is the elimination
of a non-linear sub-term in the predicate /N, written as a
guarded predicate [28]]. We over-approximate a non-linear Lip-
schitz continuous function f : D — R over a bounded region
D C R™ with a pair of piecewise affine functions f~, f
such that for all z € D, we have f~(z) < f(z) < fT(x).To
make over-approximations tighter, we consider a partition
{lL,I,...,I;} that covers D.We then consider a pair of
families (F~, F ™) of linear functions (F~ = {f;,..., f, }
Fr={ff,...,fiF}), such that for all i € [k], and for all
x € I;, we have f; (z) < f(x) < f" (2).

Definition 3. We say that T = {I1,I5,...,I}} is a cover of
the closed bounded region D C R", if D C Ule L If all sets
I; can be defined by linear predicates, I is a linear cover.
A set of functions F = {f1,..., fx} is a linear family over
T if there exists a matrix F € RF*"Y) guch thatf;(x) =
Fini1 + Z?zl F; jz;for all i € [k].A linearisation of f :
R™ — R on D is a pair of linear families(F~,FT) over
a linear cover T of D,such that for all i € [k] if x € I,
thenf; (z) < f(x) < f ().

By abuse of language, given a matrix F, we will denote
with Fj(z) = fi(x) = intl T Z;‘L:I F; jx;. We do not
require that I; N I; = @ for i # j. All covers we consider
have nonempty intersections as they share boundaries with
adjacent regions. This is harmless, since if x € I;N1;, we have
that max{f, (x), f; ()} < f() < min{f;" (2), /] (2)}, and
consequently this defines an over-approximation of f.

B. Linear Over-approximation of a Constraint

We obtain a linear over-approximation of a DTHS Hby
substituting all non linear sub-terms that appear in the transi-
tion relation N of H with their linearisations.Let C (V') be
a constraint in N that contains a non-linear function as a
sub-term. Then C(V) has the shape f(R, W)+ E(V) < b,
where f is a non-linear function, R C V7" is aset of n
real variables {r1,...,7,}, and W C V% is aset of discrete
variables.Let Dy = {wj,...,w},} be the set of possible
valuations of discrete variables in W. For all i € [m], we
consider the function f;(R)obtained from f, by instantiating
discrete variables with w}, i.e. f;(R) = f(R,w}).Then C(V)
is equivalent to the predicate\/;.,,, [fi(R) + E(V)) < b], that
can be represented as the following guarded predicate:

N 2= R +EV) <A DY z>1
i€[m] i€[m]
by introducing m fresh boolean variables z1, ..., z,,.Let Z =
{I,I5,...,I}} be a linear cover of Dgand for each i € [k],
let (F;,F;") be a linearisation of f; on Z;, with F; =
{fins-- o [y and FFo= {fif, ... [} Let Ii(R) be a
linear predicate such that 7* € I; if and only if ;(r*).Taking
mxk fresh continuous variablesY = {y; ;}, clm),je [y andmx
k fresh boolean variablesZ = {z; ; }iG[m] Jelk]

,we define the

guardedpredicate C(V, Y, Z) as follows:
Nietmy.jemZid = Wig + E(V) < 0] )
A Nepmpjem [z = [fiy(R) <wig < FHR)] (5)
A Niepmyjerr#id = LRI Nigpm) 2jem % 2 1 (6)



This transformation eliminates the non-linear sub-expression
fOW,R) in a constraint C(V), yielding a constraint
C(V,Y, Z) such that if, for some valuation v* of variables in
V, C(v*) holds, then C(v*, §*, 2*) holds for some assignment

y* and z* of variables Y and Z.

Proposition 1. Let C(V) be a constraint containing a non-
linear sub-term. lIts linearisation C(V,Y,Z) is such that
cCV)=3Y,ZC(V,Y,Z).

Proof: Let v* be such that C'(v*) holds. Let r* be the
(induced) assignment to real variables R = V" C V' and w;
be the (induced) assignment to discrete variables W = V¢ C
V.Hence, f(r*,w}) + E(v*) < b for some w} € Dy .Since
Z is a cover, r* € I; for some j € [k], and hence {1(7’*)
holds.Let us consider any assignment to variables in Y and
Z such that z7; = 1 and 2, , = 0 for all p,q such that
p#iorq#j, y;; = f(r,w"), and arbitrary values to
other variables in Y. This assignment satisfies constraint
because y; ; = f(r*,w"), and v* satisfies C. Constraint (5)
holds, because z,, , = 0 for all p, g such that p # i or ¢ # j
and y;; = f(r*,w") and f;, fi" over-approximate f on I;.
Constraint @ holds because r* € I; and because zj ;= 1. m

C. Linear Over-approximation of a DTHS

Given a DTHS H = (X,U,Y,N), without loss of gen-
erality, we can suppose that the transition relation NN is a
conjunction/\ ;. Ci(X, U, Y, X ") of constraints.By applying
iteratively the above transformation to each non-linear sub-
term occurringin N, we obtain a conjunction of guarded
constraints N = Nicin) Ci(X,U,Y, X") By repeatedly apply-
ing Prop. it is easy to show that N = N.Therefore,
a linearisation L3y = (X,U,Y,N) of H is such that its
dynamics over-approximates the one of H, thus obtaining the
following.

Theorem 2. Let H be a DTHS and L4, be a linearisation of
H.Then LTS(H) C LTS(Ly).

Theorem 3. Let S = (S,A,T1) and So = (S,A,T»)
be twoLTSs, and let K be a solution to the LTS control
problem(S2,I,G).If S C Sy and for all s € SAdm(Sy,s) =
Adm(Ss, s)then K is a solution also to (S1,1,G).

Theorems [2] and [3] (already proven in the context of su-
pervisory control in [32]), guarantee that controllers for the
linearised system are controllers for the original system.

Corollary 4. Let ‘H be a DTHS and letLq; be its lineari-
sationIf K is a solution to (L4,1,G) and LTS(H) is non-
blocking, then K is a solution also to (H,I,QG).

V. AUTOMATIC DTHS LINEAR OVER-APPROXIMATION

The over-approximation of a DTHS Hwith a DTLHS Ly
described inSect. requires finding linear over- and under-
approximations of non-linear sub-expressions occurring in the
transition relation of #.This section is devoted to present an
algorithm that computes such approximations.

Algorithm 1 Linearisation of a function
Input: A closed bounded region D = [a,b] C R™ Lipschitz
continuous function f : D — R,number of sampling
points mand maximum linearisation error €
function linearize(D, f, m,¢)
1: A < LipschitzConst( f, D)
2: S,9 < sample(D,m)
5 O7() e A< S - Al
4 CH(f) < N\ f7(s) = f(s) + AlS]
seS

s: OO0, f~, f1) + /G\SJ”(S) —f(s) <0

6: err < min # such that C~ A C*T A C? holds
7: if err < ¢ then

8: return (err,{D},[f7],[f1])

9: else

10: T <« split(D)

11:  for all 7 € [2"] do

12: {erry, T;, F;, F.") < linearize(1;, f,m, )
13: return <maxi err;, Uz Z;, ®in‘_’ @iFi+>

A. Linearisation Algorithm

We aim at finding linearisations that introduce as less-
nondeterminism as possible, because nondeterminism makes
finding solution to a control problem harder.We start by
defining a notion of linearisation error to measure how tight
a linearisation of a function f is.

Definition 4. Let D C R" be a closed region and let
(F=,FT) be a family of linear functionson a cover T =
{I1,1I5,...,Iy} of D.The linearisation error ise(F, Ft) =
masicp maxee, (f7(2) - 7 (x).

Our linearize function in Alg. [[computes a linearisation
({f~},{f*}) of a Lipschitz continuous function f over a
closed region D = [a,b] C R™ (lines [IH). If e({f~}. {f*})
is greater than the required threshold ¢, function split (line [I0)
divides D into a finer linear cover {I1,...,Isn} by dividing
each interval [a;, b;] into two sub-intervalsof width (b; —a;)/2
and recursively calls itself on intervals I, ..., Is» (line [I2).
At the end, the resulting linear cover and linearisation is built
as union ofcorresponding results for each I; (line [I3)).Function
LipschitzConst (line 1)) computes a Lipschitz constant A for f
on D, by using well known techniques (see, e.g. [31]]). The
choice of A does not affect algorithm correctness, but the lower
A, the faster linearize converges. To speed up convergence,
we compute a new value for A at each recursive call on the
hyper-interval D under consideration. Function sample (line[2)
chooses a set S of m™ points inside D,that are nodes in a
uniform n-dimensional grid of size 6 = |D|/m. Increasing m
of sampling points decreases the linearisation error,at the price
of solving harder LP problems.Since constraint O~ ACt AC?
(line [6)is a conjunction of linear inequalities that involves
real variables only, to find a linearisation of f over D, we
solve in line [6] a Linear Programming (LP) problem where
coefficients of the row vectors f~ and f* are decision
variables. ConstraintsC~(f~) and C*(f*) in lines [3| and



mply that admissible solutions (f~, fT) of the LP problem
are coefficients of a linearisation of f.Since A is a Lipschitz
constant for f on D, we have f(s)—\|d| < f(z) < f(s)+A]d],
for all s € S and for all z € [s, s+ 0]. The constraintC~ ()
implies that f~(z) < f(s) — A|dlandC*(fT) implies that

fT(z) > f(s) + Ad|.Constraint C?(f~, f*,0) in line

ensuresthat the maximum distance between f~ and f7, i.e.
the linearisationerror, is less or equal than the value of the
decision variable 6. Therefore, the optimal value of the LP
problem in line [6]is the minimum 6 for which there exists a
linearisation(F —, F*)(defined by matrices [f~] and [fT])of f
on the cover of D such that, forall z € D, f+(z)—f~(z) <86.
B. Linearisation Algorithm Correctness

Correctness of Alg. [T]is established by Theorem [5] ensuring
that function linearize eventually terminates by yielding as a
result matrices F'~ and F'T that define indeed a linearisation
of f over D with linearisation error err.

Theorem 5. Let D = [a,b] C R™,f : D — R be a Lipschitz
continuous function,m be the number of sampling points, ande
be the maximum tolerable linearisation error. Then:

1) function linearize(D, f, m, ) terminates;

2) If it returns {err,Z, F'~,F*) then F~ and F* define a

linearisation (F~,F 1) of f such that err < e.

Proof: 1) Let us considerM = max,cp f(x) andm =
mingep f(z). Functionsft(z) = M + Md|andf™ (z) =
m — A|d]are admissible solutionsto the LP problem solved
in line [0] Therefore, linearisation error is bounded by M —
m + 2M|d]. Since X is a Lipschitz constant for f on D,
M — m is bounded by A|D| and henceerr = e(F~,F1) <
A|D| 4+ 2A|6|.Denoting with err’ (resp. D’, §’, A)the value of
the variable err (resp. D, J, A)in a recursive call, we have that
err’ < N|D'| +2X|d'| < A|D|/2 + A|é| = err/2. Therefore,
after k recursive calls, the error erry, is bounded by err/ ok,
As a consequence, the maximum nesting k of recursive calls is
logs (M| D] + 2X|6]) /e. 2)If linearize returns {err,Z, F~, FT),
then each I € 7 has been computed in a leaf of its recursion
tree, and recursive calls stopped because err < e. Since 6
satisfies constraint C%, we have that F*(z) — F~(z) < ¢
for all x € I.Now, we show that F~ and F1t define a
linearisation over Z. Each € D belongs to an interval
J = [s,s + ¢], whose vertices arecomputed by function
sample. A linear function on the closed hyper-interval J has its
minimum on a vertex vg of J.Since A is a Lipschitz constant
for f on I and the diameter of J is less than |§|, we have
that f(z) > f(vo) — A|d|.Since fT satisfies the constraint
C™ in line [i] we have also f*(vo) > f(vo) + Ald|. By
transitivity, f*(z) > f(x).Dually, the same reasoning shows
[ () < f(=). u

As for complexity, in the termination proof, we showed
that the nesting & of recursive calls is at worst (logy, A|D| +
2X|6])/e. Since each activation of linearize can generate 2"
recursive calls, the maximum number of recursive calls in the
worst case is 2% and hence ((A|D|+2\[d])/)™ LP problems
have to be solved.

VI. EXPERIMENTAL RESULTS

We implemented our linearisation algorithmin C program-

ming language using IBM ILOG CPLEX for solving LP

TABLE I: Experimental results forzzzl TiTit1

t=2,m=40,z; €[—5,5] t=3,m=10,z;€[-2,2]

n CPU n CPU
monolithic 4768  5d7h49m51s 45436 1d8h40m16s
term-wise 536 1m15s 660 1.1s

problems.All experiments have been carried out on anlntel®
Xeon® CPU @ 2.83 GHA'l

A. Evaluation of linearisation algorithm

We start by applying our linearisation algorithm to the
function y cos x (that appears in the dynamics of the inverted
pendulum on the cart) on the interval [0, 27] x [—2, 2].Figs.
and [3] show thelinearisation of y cos « computed usingm =10
sampling points and 0.5 as upper bound for linearisation
error. Fig. [ (resp. Fig. [S)shows how the choice of m
impacts onthe number of intervals in the computed linear
cover (resp. CPU time).Increasing m reduces the number of
intervals at the price of solving harderLP problems and this
increases CPU time.After a certain threshold, increasing m
gives no further improvements(for ycosz for m > 40 the
number of intervals does not decreasesignificantly).Function
linearize is exponential in the number n of dimensions
of D.However, our technique allows each non-linear sub-
term to be linearisedindependently.Let us consider a function
fz) = 22:1 a; fi(X;) where for all ¢ € [t], f; is non-
linear and a constraint C(X) = f(X) < b. In this case,
we can choose to apply function linearize to frequiring €
as maximum linearisation error (monolithic approach) or to
iteratively apply the transformationof Sect. to each sub-
term a;f;(X) requiringe; as maximum linearisation error,
choosing all ¢; insuch a way that 2221 €; = € (term-wise
approach).Let f~, f* (resp. g; , g;r ) be linearisation computed
by the monolithic (resp. term-wise) approach.In both cases,
we have that |f*(z) — f~(z)] < € and|gT (x) —g (z)] <
S g (@) —g; (x)] < 3¢, ei = e.When the number of
variables in each f; is less than total numberof variables, term-
wise approach can greatly reduce both theresulting number of
intervals in the computed linear cover and CPU time with
respect to monolithic approach.We experimentally show this
by considering the functionZZ:1 ;x4 for t = 2,3.We apply
monolithic approach by requiring ¢ = 1.0 asupper bound
for the linearisation error andterm-wise approach by requiring
g; = ¢/t asupper bound for the linearisation error of each
fi.Table [I| summarizes our results.

B. Control Software Synthesis

We demonstrate how our linearisation technique, combined
with thetool QKS [28] can be used to automatically generate
control software for anon-linear DTHS, by applying this
workflow to the pendulum benchmark presented inEx. 2] We
set pendulum parameters ! and m in such a way that g/l = 1
(i.e. I = g) and1/(mi?) = 1 (i.e. m = 1/1%). We consider

I'Software and benchmarks are available as public repositories. linearizer
(https://bitbucket.org/mclab/linearizer) is the C library implementing Alg. 1.
linearizer-benchmark (https://bitbucket.org/mclab/linearizer-benchmark) con-
tains experimental results. lindgks (https://bitbucket.org/mclab/lindgks) trans-
forms output of linearization into QKS input.



Fig. 3: Linearisation of y cos x
zoomed in [, 271] x [—2,0]
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Fig. 7: Linearisation of sinz
with e = 0.5
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a sampling time 7' = 0.1s. System dynamics is discretised
with a time step 7 = 0.01s (i.e., we replicate the transition
relation 10 times).The friction coefficients p isset to 0.01 and
we to 0, and torquing force F' to 0.5.We consider the DTHS
control problem where the initial and the goal regions I and
G are defined as in Ex. fland a uniform quantisation as de-
scribed in Ex. [3]We run QKS on the DTLHS controlproblem
(Egi),l ,G), Whereﬁgj) is the linearisation of Hobtained by
applying technique from Sec. [V] using e asthe upper bound
for the linearisation error of sinz.Fig. [7] shows linearisation
of sinz computed for ¢ = 0.5.Table [l summarises our
results for different choices of band .Column n shows the
number of intervals in the cover, CPU and MEM show the
running time (days, hours, minutes, seconds) and RAM usage
(MB), and Res. is the result of the control synthesis(PASS
or FAIL).Running time in case of FAIL is much smaller
than in thecase of PASS thanks to the on-the-fly nature of
the QKS algorithm [4] thatdetects as soon as possible if
a solution cannot be found, without fully computingsystem
abstraction. Most of the running time is devoted to compute
system abstraction, that in turn depends mainly on b and on
the complexity of MILP problems that have to be solved.
Data reported in Table [[I] allow us to evaluate the impact
on running time of removing modes from the model (from
about 9 to less than 1 day) as well as that of removing
transition replication (from 23h14m to 1h36m). We simulated
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Fig. 9: Hybridin S¢enedation
starting from downward position
(angle normalised in [—, 7])

TABLE II: Hybrid: Control software synthesis results

b & n CPU MEM Res.
8 05 4 27m40s 76MB  FAIL
9 05 4 8d22h13m35s 466MB PASS
9 1.1 2 1h01m04s 75MB  FAIL

the controller found with b = 9 and € = 0.5plugging generated
control software into Modelica-based simulator.Fig. [9] shows
a simulation starting with the pendulum stationary in the
downward position (1 =7, 2 =0).Controllable region of the
synthesised controller is shown in Fig. 8] Different colours
mean different sets of actions enabled by thecontroller (see
upper stripe of the plot).With ¢ = 1.1 as linearisation error,
QKS fails to find a solutionbecause of the nondeterminism
introduced in the linearisation process.

C. Control Software Synthesis on Switched Systems

Finally, we compare our approach to the abstraction based
control synthesis method implemented in Pessoa [29]. By
choosing p1 = po = 0.01 in the pendulum benchmark
(Ex.[I) we get a switched system without mode jumps (other
parameters are set as in Sect. m.We run two experiments
with QKS (with time steps 7 = 0.1 and 0.01), both setting
b = 9 for state quantisation.We run one experiment with
Pessoa with the same sampling time and state quantisation step
0.0138 (yielding to 9 bits for 1 and 10 for x3), while the time
step 7 depends on MATLAB integratoﬂModel linearization
with € = 0.1 takes 0.17s, resulting in 8 intervals for sin(zy).
Comparison between QKS and Pessoa can be summarised as
follows.1) CPU synthesis time: QKS with time step 7=0.1
computes the controller saving 20% when the QKS model
uses replication (7 = 0.01), Pessoa saves 91% 2) MEM:

2Pessoa modeling of the inverted pendulum with fixed pivot point is based
on the inverted pendulum on the cart available at https://sites.google.com/a/
cyphylab.ee.ucla.edu/pessoa/documentation/examples- 1/inverted-pendulum


https://sites.google.com/a/cyphylab.ee.ucla.edu/pessoa/documentation/examples-1/inverted-pendulum
https://sites.google.com/a/cyphylab.ee.ucla.edu/pessoa/documentation/examples-1/inverted-pendulum

TABLE III: Switched: QKS compared to Pessoa

Tool T CPU MEM | K| h(K)
Pessoa ode45 2h00OmO7s 111MB 19994 40

QKS 0.1 1h36m07s 467MB 21629 38

QKS 0.01 23h14m24s 504MB 21961 38

Pessoa uses much less memory than QKS but it requires
the MATLAB environment. 3) Controllable regions: Figs.
and [I1] show that the two controllers use different control
strategies (colour patterns meaning is the same as in Fig. [§).
Understanding different nature of these two control strategies
would be interesting, still not in the scope of this paper.
4) Simulations: Both controllers are able to reach the goal,
even starting from pendulum downright position (Fig. [ shows
Simulink simulations). Here, we used the QKS controller with
7 =0.01. 5) WCET (h(K)): Differences are not significative,
as QKS uses 38 bits against 40 bits used by Pessoa, but this
depends on the Pessoa state quantisation step.

VII. CONCLUSIONS

In this technical note, we have presented methods and
tools to transform control synthesis problems for discrete time
non-linear hybrid system into a controlsynthesis problem for
discrete time linear system.Our approach consists of over-
approximating a non-linear hybrid system, by means of a
syntactic replacement of all non-linear functions occurring
in its transition relation with piece-wise affine constraints.We
require only Lipschitz continuity of non-linear functions on a
bounded region.We implemented our procedureand evaluated
performance of the linearisation procedure as well as that of
control synthesis. Finally, we have compared our approach to
the state-of-the-art tool Pessoa on a switched system.
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