
MODEL CHECKING SATELLITE OPERATIONAL PROCEDURES

Federico Cavaliere1, Federico Mari2, Igor Melatti 2, Giovanni Minei1, Ivano Salvo2, Enrico Tronci 2, Giovanni
Verzino1, and Yuri Yushtein3

1 Telespazio S.p.A., PSC Napoli, Via Gianturco 31, 80146 Napoli, Italy, Emails:
{federico.cavaliere,giovanni.minei,giovanni.verzino}@telespazio.com

2 Computer Science Department, Sapienza University of Rome,Via Salaria 113, 00198 Roma, Italy, Emails:
{mari,melatti,salvo,tronci}@di.uniroma1.it

3 Systems, Software & Technology Department, ESA/ESTEC, Keplerlaan 1, PO Box 299, 2200AG Noordwijk, The
Netherlands, Email:Yuri.Yushtein@esa.int

ABSTRACT

Satellite Operational Procedures (OPs) are mission criti-
cal systems which verification typically requires months
of simulation. Automating OP verification by using
model checking techniques to explore all possible sce-
narios will decrease OP verification cost and increase OP
reliability. The main obstruction is modeling the satellite
inside a model checker. We show how, by using an ex-
plicit model checker (CMurphi), it is possible to exploit
a satellite simulator (SIMSAT) to automate OP verifica-
tion. We model OPs, disturbances as well as the behavior
of the human operator by using the model checker mod-
eling language and instead use the satellite simulator as
a model of the satellite itself. We achieve this by using
the model checker as a driver for the simulation activity.
In order to assess feasibility of our approach we present
experimental results on a simple yet meaningful OP. Our
results show that we can save up to 90% of verification
time.

Key words: Automatic verification of satellite opera-
tional procedures; Model checking; SIMSAT.

1. INTRODUCTION

Motivations When orbiting, satellites are controlled
from the ground by means of satelliteOperational Pro-
cedures(OPs), executed byhuman operators. OPs con-
sist of a set of instructions reading information from the
satellite (telemetries, TM) and sending commands to it
(telecommands, TC).

OPs aremission critical. In fact, OPs failure may en-
tail hardware damages, degradation of satellite services
as well as costly human based recovery actions. Veri-
fication of OPs is thus needed in order to avoid failures.
However, traditional simulation based verification of OPs
is highly expensive, since it requires a huge amount of
time of highly skilled personnel. The previous consider-
ations motivate research on methods and tools that allow

automatic verification of OPs. This is the focus of the
present paper.

Contribution In this paper we present a model check-
ing based approach for the automatic verification of OPs.
Our approach is aimed atimproving OP quality assur-
anceby automatic exhaustive exploration of all possible
simulation scenarios. Moreover, our solution aims atde-
creasing OP verification time(and thus cost) by using
a model checker to automatically drive (via fault injec-
tions) the simulator. Finally, our approach allows humans
to focus on thedesign of disturbance models–e.g. how
many faults are allowed, etc.–which are highly reusable
across similar OPs.

Since we use model checking for OPs verification, we
need a model for the satellite. Unfortunately, mod-
eling the satellite from scratch using a model checker
input language is prohibitively expensive. We over-
come this obstruction by exploiting availability of satel-
lite models inside a satellite simulator, namely the SIM-
SAT simulator[8].

We choose CMurphi[3, 2] as the model checker suitable
for the context of this paper. The model checker role is
twofold. First, it acts as adriver for the simulator. To
this end, the model checker reads the simulator state on
one side and, on the other side, it feeds the simulator with
disturbances. Second, the model checker models the OP
and the human operator behavior. For example, the time
needed by the operator to send telecommands to the satel-
lite could affect the procedure result itself. Thus it must
be taken into consideration by the model checker.

Paper Overview In Sect. 2 we describe how to model
the system under verification, together with the initial
settings and the properties we want to verify. Sect. 3
describes our main contribution, namely how the model
checker and the simulator interacts in order to verify op-
erational procedures. Then, Sect. 4 instantiate the general
approach described in Sect. 3. In particular, we use the
model checker CMurphi to drive the SIMSAT simulator.

Finally, in Sect. 6 we show experimental results on us-
ing the described method to validate a small operational
procedure, described in Sect. 5.

2. MODELING THE SYSTEM UNDER VERIFI-
CATION

In this section we explain how to model an operational
procedure and its environment so as to allow verification
via model checking. Namely, Sect. 2.1 describes how
to model the operational procedure environment with the
simulator. A model for operational procedures is given in
Sect. 2.2. Sect. 2.3 describes the model for the whole
system under verification. Finally, Sects. 2.4 and 2.5
describe the models for initial conditions and the safety
properties to verify.

2.1. Modeling the Operational Procedure Environ-
ment with the Simulator

We view the simulator as a black box. This is motivated
by the fact that indeed not all details of the models inside
a simulator may be available in a general setting. This
is definitely the case in our specific setting where some
of the models inside the simulator have been developed
by a third party and are not fully visible to the simulator
users. A simulatorMS is thus defined by a pair of func-
tions(F,G) computing, respectively, the simulator inter-
nal state and the simulator observable output (telemetries
in our case).

We take into account that the human operator takes at
least timeT to react. As usual in Computer Science, we
write z for the present value (i.e., at timekT) of variable
z, z′ for the next value (i.e., at time(k+1)T) of z and we
drop indication ofT . Thus we have:x′ = F (x, u, d, t)
and y = G(x, u, d) where: x is the simulator state at
time t; x′ is the next simulator state at timet+T ; u is the
simulator input (telecommands in our case) at timet; d is
the disturbance input (modelling external events such as
faults) at timet; y is the simulator output (telemetries in
our case) at timet.

The rationale behind such a modeling is the following.
In general the simulator model may be non-stationary,
that is functionF may also have the present timet as
an argument. This is definitely our case since depending
on timet the satellite and the celestial bodies (e.g., sun,
moon, etc) will have different positions. Thus, even start-
ing from the same statex, the system evolution may be
different. However, given the kinematics of satellite and
celestial bodies, the simulator computes their trajectory
from the actual position. Thus, as a matter of fact, the
present time is just an easy way of defining the present
position of satellite and celestial bodies. If such informa-
tion is in statex (as it is the case for us) we may use the
above stationary model forMS.

Control input u does not change during the interval
[kT, (k + 1)T], that is, it is alwaysu. This stems from
the fact that the speed of variation of the control input is

finite since in our setting it is provided by a human opera-
tor following the control policy defined by an Operational
Procedure (OP). The same holds whenu is provided by
a computer. In any case there is a (positive) timeT be-
tween changes in the control input. That is, ifu changes
we must callF again and recomputex accordingly.

Disturbance inputd models uncontrollable events such
as faults, parameter variations, etc. In general, any event
that may influence the system operations and is not under
the operator control is modeled as an uncontrollable in-
put, that is a disturbance. If there were not disturbances
the system evolution would be perfectly known, which
is unrealistic. A disturbance model is thus essential in
order to verify correctness of control policies (i.e., Oper-
ational Procedures) under realistic conditions. For exam-
ple, a too conservative disturbance model (very few dis-
turbances) may lead to consider adequate a control policy
that instead is not able to cope with real world (unforesee-
able) situations. On the other hand, a too liberal distur-
bance model may rule out adequate control policies, forc-
ing us to use a complex (and expensive) control policy, or
even preventing us from finding an adequate policy.

As for control inputs, we assume that the disturbance in-
put stays constant at least for timeT . Note that while
such an assumption always holds for controllable inputs
u, since they are human generated in our setting, this may
be not the case for disturbances which, in general, are
not human generated. For example, we may have two
consecutive faults (for example, generated by very slow
wearing processes) arbitrarily close in time. By making
T small enough we can always assume, for all practical
purposes, that faults are never simultaneous. We also note
that the actual testing approach to OPs injects faults man-
ually, so as a matter of fact the same considerations for
u apply also there. Thus, assuming that disturbances are
time-separated by at leastT seconds we do not lose cov-
erage with respect to the actual manual testing approach
for OP.

The observable outputy is just a function of the present
statex, present inputu and present disturbanced.

2.2. Operational Procedures

An Operational Procedure(OP) can be seen as a program
observing the simulator outputy and sending commands
u to the simulator. However, unlike computer programs,
an OP is executed by a human operator. Thus the time
elapsing between two steps of an OP may be arbitrary.
For example, it cannot be too small (since human op-
erators are not infinitely fast), and moreover we do not
know it a priori. In other words, the human operator is an
uncontrollable input (much as a disturbance) to the OP
deciding when OP should move to the next step. This
means that at each time instant the human operator can
decide (uncontrollable input) if OP should move to the
next step. We use a synchronous modeling where any
T seconds the human operator decides if moving to the
next step of OP or just stay in the present OP state (may
be waiting for some other external event). By makingT

Simulator (MS)Operational Procedure (OP)

Disturbances such

Model Checker (MC)

System Under Verification (SUV)

Safety Property: Inv(y) MS state (x)

as faults, etc (d)
Human Operator (m)

OP state (w)
+ TC (u)

+ TM (y)

TM (y)

TC (u)

Figure 1. Model Checking Driven Simulation

small enough we can make our model as precise as we
like.

Resting on the above considerations, we model an OP as
a pair of functions(A,C) computing, respectively, OP
internal state and OP output towards the simulator (i.e.,
telecommands in our case). We havew′ = A(w, y,m)
andu = C(w) where:w is the OP internal state (i.e., pro-
gram counter, local variables, etc);w′ is OP next state;y
is OP input (i.e., telemetries) from the simulator;m is the
operator decision (uncontrollable event) about executing
the next step of OP or stay idle;u is the telecommand OP
sends to the simulator.

Note that OP only observes the simulator output at times
0, T, 2T, 3T, This is in agreement with the fact that
the human operator takesT seconds to react. As a result,
OP implements a sample-and-hold control schema for the
simulator.

The above model seems to entail that anyT seconds a
telecommand is sent to the simulator. Of course, in gen-
eral this is not the case. This can simply be handled by
adding nop codes tou, meaning that nothing is sent to the
simulator.

2.3. System Under Verification

The system to be verified is described by the simulator
together with the given OP. Thus we have:

x′ = F (x, u, d, t) (1)
y = G(x, u, d) (2)

w′ = A(w, y,m) (3)
u = C(w) (4)

Replacingu andy with their definitions (equations 4 and
2 resp.) we get:

x′ = F (x,C(w), d, t) (5)

w′ = A(w,G(x,C(w), d),m) (6)

Equations 5 and 6 define the system state, that is(x,w),
as a function of the uncontrollable inputs (d andm), that
is, the inputs that the model checker will set in order to
exercise the system under verification.

Note that our system modeling is a discrete time one
(with sampling timeT). Since in our framework we do
not have a definition ofF andG to work with, but can
only use the simulator as a black box to computeF and
G, it does not appear that a continuous time modeling and

verification approach can be pursued in our context. On
the other hand, since the human operator reaction time is
a (possibly small) finite number, no relevant system be-
haviour appears to be lost using a discrete time approach.

2.4. Initial States
In general we will be interested in showing a property of
our system when it starts from a reasonable initial state.
This models the fact the OPs are started from reasonable
initial conditions. Accordingly, we assume that we are
given a finite setI = {(x1, w1), . . . , (xk, wk)} of initial
states. Of course, in general we may wish to consider in-
finite sets of initial states, since many state components
may take up continuous values. However, an explicit
model checker can only handle a finite number of initial
states. Thus we only consider finite sets of initial states.

Restricting to finite sets of initial states appears rea-
sonable since in our context continuous state variables
mainly represent positions (of the satellite, of the moon
of the sun, etc). Variations in such values below a certain
threshold are not relevant in our context.

We also note that current manual OP testing of course
only addresses a finite number of initial states, and in-
deed a number of initial states that is much smaller than
the one a model checker will be able to handle. Thus,
even restricting to finite sets of initial states we will still
improve OP quality assurance.

2.5. System Properties to be Verified
We are interested in verifying safety properties defined
on telemetries and OP internal state. That is, invariants
Inv(y, w) where Inv is, as usual for safety properties, a
function mapping pairs of telemetries and OP states into
boolean values. We ask that for all reachable states Inv
must be true. If a reachable state is found where Inv is
false (unsafe state) the model checker will stop and return
a counterexample, that is a sequence of events (i.e., values
for d andm) leading to the just found unsafe state. In
Sect. 3 we will illustrate the model checking approach
we will consider in our setting.

3. MODEL CHECKING DRIVEN SIMULATION

In this section we present how formal verification of op-
erational procedures can be carried out by using a model
checker together with a simulator. In Sect. 3.1 we de-
scribe how our model checking driven simulation works.
In Sect. 3.2 we show how the simulator is seen from
the model checker. In Sect. 3.3 we discuss modeling is-
sues for the system components. Finally, in Sect. 3.4 we
choose a model checker.

3.1. General Description
We assume that at each time instant at most one ofd or
m is active. That is, either we get a disturbance form the
environment (e.g., a fault) or the human operator decides
to execute the next step of the OP. That is we serialize all

events. In our context, this is not a restriction, as long as
T is small enough. Note that all possible interleaving of
faults and human actions are still considered. Simply we
rule out simultaneous events.

In our context we assume thatTelemetries(TM) y,
Telecommands(TC) u, OP statew, as well as all state
x are observable by the model checker.

These considerations lead to the schema in Fig. 1 where
the model checker acts as a malicious controller for the
SUV. That is, the model checker will try to choose se-
quences ford andu so as to drive the SUV to an unsafe
state. This realizes a model checking driven simulation.

The SUV, formally defined by Eqs. 5 and 6, is composed
by the simulator, the OP, the human operator executing
the OP and the disturbances reaching the simulator. The
OP reads TMs from the simulator while sending TCs to
it. The model checker drives the simulation by substitut-
ing the human operator (executes the next OP instruction
or stays idle) and by injecting disturbances to the simula-
tor. In order to explore all possible SUV evolutions, the
model checker will suitably set simulator states.

Note that in our setting we cannot check for equality
between two states. In fact, this entails a deep un-
derstanding of the simulator domain which is what we
want to avoid here. Conservatively we assume that any
event leads to a new–not previously visited–state. Con-
sequently, we identify a state with the sequence of events
needed to reach it. Then two states are equals if they are
reached with the same sequence of events from the same
initial state. In our context we cannot have infinite se-
quences of events since OPs always terminate. Thus the
state space explored by the model checker in our setting
is finite.

Our formal verification approach is based on using a
model checker as a driver for a given system simulator (a
satellite simulator in our context). Along the same lines,
our approach can be applied to each system whose de-
scription is rather complicated but for which a simulator
exists, e.g. automotive or avionic systems.

3.2. The Simulator As Seen From The Model
Checker

The model checking approach we are using in our con-
text is explicit. Namely, the model checker performs a
simulator state space exploration viaDepth First Search
(DFS). In order to allow the model checker to properly in-
teract with the simulator, we need to model the simulator
itself inside the model checker. Thus we have to define
the following functions:

• A function reading an initialsimulator state, say
read initial state();

• A function reading a given TMinside the current
simulator state, sayread TM().

• A function setting the simulator state, say
set simulator state().

• A function giving thenext simulator state obtained
by sending a TC, saysimulator TC step().

• A function giving the next simulator state
obtained by injecting a disturbance, say
simulator disturbance step().

Implementation of the above set of functions depends on
the system at hand. In Sect. 4.3 we describe how they are
defined in our context.

3.3. Modelling Of System Components

In order for the model checker to properly work as a
driver for the simulation, we have to model the behav-
ior of OPs, the human operator, disturbances and safety
properties. In our approach this is done by feeding the
model checker with an input file describing such models.
We assume that OPs are deterministic and human oper-
ators correctly execute OP instructions. Thus, if we ig-
nore disturbances (e.g. faults), there is only one source of
non-determinism in OPs: thehuman operator idle time,
that is, the time elapsing between the execution by the
operator of two consecutive instructions. In fact, if there
are no disturbances, two executions of a given OP only
differ in the timing, that is the time intervals elapsing
between the execution of two OP instructions. Such a
non-determinism allows us to check, for example, if in
the OP constraints about the time allowed between two
operations (for example, small enough, or large enough)
are missing. Furthermore, when disturbances are present
non-deterministic delay between OP operations allows us
to verify correctness of the interaction between distur-
bances and time delay in execution of OP instructions.

3.4. Selecting a Model Checker

First of all we note that we do not have available a system
description in our setting. In fact, while we can compute
the system next state using the simulator as a black box,
we do not have a description of the function implemented
by the simulator. This rules out symbolic approaches as,
for example, those used in symbolic model checkers for
hybrid systems such as HyTech [6], UPPAAL [9], PhaVer
[5]. Indeed, we note that all symbolic model checkers for
hybrid systems target linear hybrid systems. If we had a
description of the function implemented by the simulator
it would certainly be nonlinear. Thus, even in that case a
symbolic approach may not be directly usable.

As a matter of fact, one may claim that indeed a de-
scription of the function implemented by the simulator is
available as the source code of the program implement-
ing the simulator itself. For small systems this approach
can indeed be pursued using software model checkers like
CBMC [1]. However we note that our system is all but
small. Furthermore, it will involve complex arithmeti-
cal computations, which typically make verification in-
tractable for SAT based or OBDD based model checkers.
See [10] for a survey on software model checking.

The above considerations have led us to focus on explicit
model checkers. Examples are SPIN [7] and CMurphi

Specific Language

OP SafetyDist Human

MC4OP Client

MC4OP Server

Server Side

SIMSAT

Client Side

CMurphi Model Checker

LAN (sockets)

Figure 2. Driving SIMSAT Simulator with CMurphi
model checker

[3, 2]. Since CMurphi has already the capability of han-
dling finite precision (i.e., C-like) real numbers, as well
as interfaces toward external functions (like the one im-
plemented by the simulator) we decided to base our work
on CMurphi.

4. DRIVING SIMSAT SIMULATOR WITH
CMURPHI MODEL CHECKER

In this section we instantiate the general approach de-
scribed in Sect. 3. In particular, we use the model
checker CMurphi to drive the SIMSAT[8] simulator.
SIMSAT (Simulation Infrastructure for the Modeling of
SATellites) is the simulation infrastucture, able to host
a spacecraft and ground segment simulation, developed
by EGOS[4]. Here we use SIMSAT as an oracle to pre-
dict the next state of the satellite system. This removes
the need to explicitly implement a satellite model in our
framework. In the remaining part of this section we de-
scribe the realization of the system as shown in Fig. 2.

4.1. System Overview

From an architectural point of view, the model checker
and the simulator will run in parallel as different pro-
cesses. Thus, interactions (TMs and TCs) between them
are exchanged via inter-process communications. Note
that such processes may also be executed on different
hosts, thus communication takes place through a LAN.
This yields theclient-serverarchitecture shown in Fig. 2.
The system actors are the simulator SIMSAT, the model
checker CMurphi and a novel client-server interface be-
tween the simulator and the model checker. We name
such interfaceModel Checking for Operational Proce-
dures(MC4OP)Interface.

The MC4OP Interface acts as a protocol converter be-
tween CMurphi and SIMSAT. On theserver side, detailed
in Sect. 4.2, MC4OP receives commands from the client
side and forwards them to the simulator. MC4OP then
sends the simulator answers back to the client. On the

client side, detailed in Sect. 4.3, MC4OP drives the sim-
ulation interfacing with CMurphi. Inputs to the client are
the OP model, the disturbance model, the safety proper-
ties specification and the human operator model, coded
in the CMurphi input language.

Communications between MC4OP client and server use
a specific language described in Sect. 4.4.

The formal verification process is carried out using a
DFS on the SIMSAT simulator state space, as detailed
in Sect. 4.5.

4.2. Server side

We supply the MC4OP interface with a set of functional-
ities allowing to control the SIMSAT simulator. Namely
we can: start and halt a simulation;saveand load a
breakpoint;set and get a SIMSAT item, i.e. TCs, pa-
rameters or TMs. The ability to set an item is needed in
order to inject failures by changing values in the simula-
tion model, as well as to be able to send TCs and receive
TMs.

4.3. Client side

The MC4OP client supplies the model checker with the
functionalities needed to interface with the simulator, ex-
plained in Sect. 3.2. Moreover, the client side of the ar-
chitecture contains the models for OPs, disturbances, hu-
man operator and safety properties to verify. The set of
functions are implemented as follows.

The simulator state consists ofTelemetries(TMs) val-
ues (which may be retrieved by the OP, and thus from
the model checker) as well as SIMSAT state files (called
breakpoints). Being each breakpoint a huge file (order of
MBs), which prevents whole breakpoints sending from
SIMSAT to the model checker (especially when they run
on different hosts), and being the internal structure of
each breakpoint not known (some of the models inside
the simulator have been developed by a third party), only
breakpointsnamescan be seen by the model checker.
Breakpoint names univocally identify states on SIMSAT,
thus in the following we will consider them equivalent.

Functionread initial state() takes as input an
index i and returns the name of thei-th initial simulator
state file name. The rationale is that a number of mean-
ingful initial scenario is prepared in files on the simulator
machine. Functionread initial state() returns
the name of thei-th of such files. In this way we can eas-
ily handle the case in which many initial states are possi-
ble.

Functionread TM() takes as input the current simula-
tor state file names and a TM namej. It then returns the
value of TMj in states.

Functionset simulator state() takes as input a
simulator state file names and sets the current simulator
state tos.

Functionsimulator TC step() takes as input the
current simulator state names, a Telecommand(TC) c

given by the OP, and a timeT , and returns as output the
simulator state names′ afterT time units, as a result of
executing TCc. Note that the actual SIMSAT state file for
s′ is saved on the host where SIMSAT is running, while
the model checker only gets the state file name fors′.

Functionsimulator disturbance step() takes
as input the current simulator state names, a disturbance
d, and a timeT , and returns as output the simulator state
names′ afterT time units, as a result of injecting distur-
banced ons.

In our setting not all system states are ob-
servable, thus simulator TC step() and
simulator disturbance step() return a
fresh name each time that they are called. Of course it
may very well be the case that two different sequences
of events lead to the same state. Considering different
such states returns correct results albeit it duplicates
the work since the computation goes through states that
have already been considered. Methods to correctly and
efficiently detect duplicate states may be an interesting
further development for the present study.

4.4. Client-Server Communication Language

MC4OP client and server communicate by using a spe-
cific language. It consists of six commands, detailed in
the following.

• RUN_TC T_Slice Cmd [Param]

Function: Executes a simulation time slice with
a command. Namely: i) sends the com-
mandCmd, ii) starts the simulation, iii) waits
T_Slice milliseconds and iv) stops the sim-
ulation

Example: Start simulation switch on Heater
032 and stops after 10 seconds:
RUN_TC 10000 Z44AD

Returns: RUN_TC DONE

• RUN_NOP T_Slice

Function: Executes a simulation time slice.
Namely: i) starts the simulation, ii) waits
T_Slice milliseconds and iv) stops the
simulation

Example: Start simulation and stops after 10 sec-
onds:RUN_NOP 10000

Returns: RUN_NOP DONE

• SET_P Name Value

Function: Sets parameterName to valueValue

Example: Set parameter S.TTC.SBT1.Loop to
100:SET_P S.TTC.SBT1.Loop 100

Returns: SET_P DONE

• GET_P TM_Pkt TM_Name

Function: Gets value of TM parameter name
Example: Get value of parameter T057:

GET_P STCU1 T057

Returns: GET_P DONE Value

• SAVE_BRK Id

Function: Saves a breakpoint, which name is built
from Id.

Example: SAVE_BRK 2

Returns: SAVE_BRK DONE

• RESTORE_BRK Id

Function: Restores a breakpoint, which name is
built from Id.

Example: RESTORE_BRK 98

Returns: RESTORE_BRK DONE

4.5. Verification Process

At the beginning of the verification process, the OP to be
checked, the disturbance model (both faults and human
operator) and the invariants to check are loaded. Then the
model checker performs a depth first search on the finite
simulator state space, using the simulator as a model. Fi-
nally, CMurphi checks whether each read simulator state
is safe against the input safety properties or not, raising
an error flag if this is not the case. In this latter case, a
counterexample is returned.

This process ends when all reachable SIMSAT states are
visited by CMurphi. Since in our context simulator states
are finite, the described procedure will always end.

5. A CASE STUDY

Model of OP To validate the above approach we have
applied it to the small yet meaningful operational proce-
dureHeaterRegulation() in Lst. 1, aiming at driv-
ing the temperature of a satellite heater inside a certain
region. We describeHeaterRegulation() using a
PASCAL like pseudo-programming language (similar to
the CMurphi input language). The purpose of such a pro-
cedure is to drive TMTM Heater Temp to a value be-
tween25 and35. This is done by properly sending TCs
TC Heater On or TC Heater Off.

Model of disturbances We have defined a small
model for disturbances, shown in Lst. 2. Namely,
the model checker can set the parameter SPACE-
CRAFT.THC.Thermistors.THR057 GT 01.IsFailed to
true. This setting can be done at most once along any
OP execution. Moreover, this disturbance cannot be sent
at the very beginning of the OP execution.

Table 1. Results on the case study in Lsts. 1– 4

Top Time Reach SimStates Runs Gain

1800 4.51e+03 69 491 14 85.9%

1620 1.53e+04 229 2225 65 89.7%

1560 3.45e+04 390 3865 112 89.9%

procedure HeaterRegulation()
begin
tentative := 0;

begin_loop:
tentative := tentative + 1;
if (tentative > 3)
then return (FAILURE); endif;

read(TM_Heater_Temp);
if (TM_Heater_Temp <= 25)
then send(TC_Heater_On); endif;

if (TM_Heater_Temp >= 35)
then send(TC_Heater_Off); endif;

wait 30 seconds;
read(TM_Heater_Temp);
if ((TM_Heater_Temp >= 25) and

(TM_Heater_Temp <= 35))
then return (SUCCESS);
else goto begin_loop;

endif;
end;

Listing 1. A small OP: HeaterRegulation()

-- precondition:
-- 1. send at most once per execution;
-- 2. not at the very beginning;

SPACECRAFT.THC.Thermistors.THR_057_GT_01.
IsFailed := true;

Listing 2. A small model for disturbances

Model of human operator We have defined a small
model for human operator, shown in Lst. 3. Namely, the
model checker can execute the next OP step with a TC
or can stay idle. The latter situation cannot happen more
than one time along any OP execution and cannot happen
at the very beginning of the OP execution.

-- precondition:
-- 1. send at most once per execution;
-- 2. not at the very beginning;

procedure execute_next_OP_step();
procedure stay_idle();

Listing 3. A small model for human operator

Safety properties We have defined a significant set of
safety properties for the above OP, listed in Lst. 4.

TM_Heater_Temp >= -100;
TM_Heater_Temp <= 100;
On success we have tentative <= 3;
On failure we have tentative > 3;
Within a given maximum time we have success

or failure.

Listing 4. A small set of safety properties

6. EXPERIMENTAL RESULTS

In order to assess feasibility of our approach, we have
applied it to the case study of Sect. 5.

To this aim, we run CMurphi (and SIMSAT) on three dif-
ferent disturbance and human operator models for the OP
shown in Lst. 1. Namely, letTop be a model parameter
defined as the number of seconds we wait before injecting
a disturbance or allowing the human operator to stay idle.
Note that decreasingTop will inject earlier disturbances,
thus increasing the number of reachable states. Then, we
run CMurphi by settingTop to three decreasing values.
Our experimental results are in Tab. 1. Tab. 1 columns
meaning is as follows. ColumnTop is the model parame-
ter discussed above. ColumnTime is the total verification
time in seconds (CMurphi + SIMSAT). ColumnReachis
the number ofreachablestates, that is the states visited by
the model checker CMurphi. We can compare our model
checking driven simulation with asimple human driven
simulationthat always starts simulation runs from the ini-
tial state. Of course in principle a human may save and
restore breakpoints as a model checker does, however for
more than a few dozens of breakpoints this is in practice
unfeasible for a human. Accordingly, columnSimStates
shows the number of states asimple human driven simu-
lation would have to visit. ColumnRuns is the number
of different simulations we would have to run without us-
ing our approach (i.e. traditional manual simulation) to
achieve the same coverage. ColumnGain is the gain we
obtain with our approach, i.e.1−Reach/SimStates. Fig-
ure 3 graphically depicts the resulting simulation tree for
the caseTop = 1800.

CMurphi memory usage is negligible (8 MB) since the
number of states is small by model checking standards.
On the server side, each SIMSAT state file has a size of
3MB, thus at most 1.1GB of disk space is needed for the
longest verification (i.e. forTop = 1560).

From Tab. 1 we see that we are able to save nearly 90%
w.r.t. the traditional simulation approach.

7. CONCLUSIONS

We have presented a model checking approach for the
automatic verification of satellite operational procedures
(OPs). In order to apply our approach we have to model
the satellite, the OP, the human behavior and disturbances

 31 states path

s0

s2

RUN_NOP 60000

s31

RUN_NOPs,
RUN_TCs and

 GET_Ps

s32

SET_P P1 := false
RUN_NOP 60000

s36

SET_P P1 := true
RUN_NOP 60000

s49

RUN_NOP 60000

s69

GET_P P0 (= 27.11764705882353)
RUN_NOP 60000

s33

RUN_NOP 60000

s35

GET_P P0 (= 27.11764705882353)
RUN_NOP 60000

s34

GET_P P0 (= 26.764705882352942)
RUN_NOP 60000

s37

RUN_NOP 60000

s41

GET_P P0 (= -40)
RUN_NOP 60000

s38

GET_P P0 (= -40)
RUN_NOP 60000

s39

RUN_NOP 60000

s40

RUN_NOP 60000

s42

RUN_NOP 60000

s45

RUN_NOP 60000

s43

RUN_NOP 60000

s44

RUN_NOP 60000

s46

RUN_NOP 60000

s48

RUN_NOP 60000

s47

RUN_NOP 60000

s50

SET_P P1 := false
RUN_NOP 60000

s52

SET_P P1 := true
RUN_NOP 60000

s56

GET_P P0 (= -40)
RUN_NOP 60000

s51

GET_P P0 (= 26.764705882352942)
RUN_NOP 60000

s53

GET_P P0 (= -40)
RUN_NOP 60000

s54

RUN_NOP 60000

s55

RUN_NOP 60000

s57

SET_P P1 := false
RUN_NOP 60000

s60

SET_P P1 := true
RUN_NOP 60000

s63

RUN_NOP 60000

s58

RUN_NOP 60000

s59

RUN_NOP 60000

s61

RUN_NOP 60000

s62

RUN_NOP 60000

s64

SET_P P1 := false
RUN_NOP 60000

s66

SET_P P1 := true
RUN_NOP 60000

s68

RUN_NOP 60000

s65

RUN_NOP 60000

s67

RUN_NOP 60000

Figure 3. State space for verification ofHeaterRegulation() with Top = 1800

within the model checker. The main obstruction to over-
come is to model the satellite. In this paper we have
shown how to overcome this obstruction by using a suit-
able simulator (SIMSAT) for the satellite. With our ap-
proach, the model checker (CMurphi) has a twofold role:
1) to act as a driver for the SIMSAT simulator generat-
ing disturbances (such as faults), and 2) to model the OP
human operator.

Our approach is aimed at improving reliability by sup-
porting automatic exhaustive verification of OPs. In fact,
all possible simulation scenarios, that is sequences of
events (paths on our state space), are considered by the
model checker driving the simulation.

In order to assess feasibility of our approach we presented
preliminary experimental results on a simple meaningful
OP. Our results show that we can save up to 90% of the
verification time w.r.t. thesimple human driven simula-
tion.

Note that our model checking driven simulation approach
can be adopted in all situations in which a simulator ex-
ists, e.g. automotive, avionics, etc.

As future work, we plan to apply our approach to the ver-
ification of on-board control procedures.

Acknowledgements This research has been partially
supported by ESA ITI AO6067/B00010362 “Model
Checker Validator for Satellite Operational Procedure”.

REFERENCES

[1] E. Clarke, D. Kroening, and K. Yorav. Behav-
ioral consistency of c and verilog programs using
bounded model checking. InDAC, pages 368–371,
2003. ACM.

[2] Cmurphi web page:
http://mclab.di.uniroma1.it/softwarecmurphi.html.

[3] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci,
and M. Venturini Zilli. Exploiting transition local-
ity in automatic verification of finite-state concur-
rent systems.STTT, 6(4):320–341, 08 2004.

[4] EGOS esa ground operating system web page:
http://www.egos.esa.int/portal/egos-web/.

[5] G. Frehse. PHAVer: Algorithmic verification of hy-
brid systems past HyTech.STTT, 10(3), jun 2008.

[6] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.
Hytech: A model checker for hybrid systems.STTT,
1(1):110–122, dec 1997.

[7] G. J. Holzmann.The SPIN model checker: Primer
and reference manual. Addison Wesley, 2004.

[8] “Introduction to SIMSAT” web page:
http://www.egos.esa.int/portal/egos-
web/products/Simulators/SIMSAT/, 2011.

[9] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL:
Status and developments. InCAV, LNCS 1254,
pages 456–459. Springer, 1997.

[10] B. Schlich and S. Kowalewski. Model checking C
source code for embedded systems.STTT, 11:187–
202, June 2009.

