Model Checking Driven Simulation of Sat Procedures

Giovanni Verzing, Federico CavaliereFederico Mari, Igor Melatti,
Giovanni Minei? lvano Salvo), Yuri Yushtein} and Enrico Trondi

A Satellite Operational Procedure (OP) consists of a set ohstructions reading information from the satel-
lite (telemetries, TM) and sending commands to it (telecomiands, TC). An OP can be executed by a human or
by a computer (on-board procedures). Typically OPs are migen critical systems since their failure may entail
hardware damages, degradation of satellite services or cihg human based recovery actions. For this reason
OPs are typically thoroughly tested in order to have reasonkale assurances about their correctness. Unfor-
tunately, traditional simulation based verification of OPsis highly expensive, since it requires a high amount
of time from highly skilled personnel and does not provide fomal assurance about the correctness of the OP
under verification.

We show how a model checker (CMurphi) can be used to drive a sallite simulator (namely, SIMSAT). The
proposed approach has the following benefits. First, it impoves OP quality assurance by automatic exhaustive
exploration of all possible simulation scenarios whereas manually driven simulation campaign cannot offer
any formal assurance on the coverage achieved by the simuiah campaign. Second, it decreases OP verifi-
cation costs by using a model checker to automatically drivévia fault injections) the simulator. The model
checker will record the considered simulation scenarios ashautomatically generate fresh (i.e., not previously
considered) scenarios automatically stopping when all meéngful scenarios have been considered. Third, our
approach allows humans to focus on the design of disturbanamodels (e.g., how many faults it makes sense to
consider, when such faults may occur, etc.) which are highlgeusable across verification of similar OPs.

We implemented a prototype system by interfacing the CMurphmodel checker to the SIMSAT simulator.
Our experimental results show the feasibility of the proposd approach.

|. Introduction

MoOTIVATIONS Building a satellite, getting it into orbit and then maimtaig it from the ground control facility is
a big financial endeavor. When orbiting, satellites are radled from the ground by means of satell@perational
ProcedureqOPs), executed bluman operators OPs consist of a set of instructions reading informati@mifithe
satellite (telemetries, TM) and sending commands to ie¢@inmands, TC).

OPs aramission critical In fact, OPs failure may entail hardware damages, degmdaf satellite services as
well as costly human based recovery actions. Verificatio®Bs is thus needed in order to avoid failures. How-
ever, traditional simulation based verification of OPs ghy expensive, since it requires a huge amount of time of
highly skilled personnel. The previous considerationsivatd research on methods and tools that allow automatic
verification of OPs. This is the focus of the present paper.

CONTRIBUTION In this paper we present a model checking based approachd@utomatic verification of OPs.
Our approach is aimed anproving OP quality assurandey automatic exhaustive exploration of all possible sim-
ulation scenarios. Moreover, our solution aimglatreasing OP verification tim@nd thus cost) by using a model
checker to automatically drive (via fault injections) theslator. Finally, our approach allows humans to focus @n th
design of disturbance models.g. how many faults are allowed, etc.—which are highlgable across similar OPs.

Since we use model checking for OPs verification, we need ahfodthe satellite. Unfortunately, modeling the
satellite from scratch using a model checker input langisgeohibitively expensive. We overcome this obstruction
by exploiting availability of satellite models inside aaliite simulator, namely the SIMSAT simulator[1].

*Telespazio S.p.A., PSC Napoli, Via Gianturco 31, 80146 Nagtaly, Emails: {f ederi co. cavaliere, gi ovanni.ninei,
gi ovanni . verzi no}@ el espazi 0. com Contact point Giovanni Verzino.

fComputer Science Department, Sapienza University of RafizeSalaria 113, 00198 Roma, ltaly, Email§nari , mel atti, sal vo,
tronci }@li . uni romal. i t.Contact point Enrico Tronci.

tSystems, Software & Technology Department, ESA/ESTEC létlmn 1, PO Box 299, 2200AG Noordwijk, The Netherlands,aifm
Yuri. Yushtei n@sa. int

We choose CMurphi[2, 3] as the model checker suitable foctmext of this paper. The model checker role is
twofold. First, it acts as driver for the simulator. To this end, the model checker reads thelsitor state on one side
and, on the other side, it feeds the simulator vdisturbances Second, the model checker models the OP and the
human operator behavior. For example, the time needed byptbiator to send telecommands to the satellite could
affect the procedure result itself. Thus it must be taken aoinsideration by the model checker.

RELATED WORK In this paper we extend our previous results [4] by formualg& more general formal framework
including a model for disturbances. Moreover we apply oyarapch to a fault-tolerant on-board OP.

PAPER OVERVIEW In Sect. Il we give an overview on the model checking problam$ect. Il we describe how to
model the system under verification, together with theah#ettings and the properties we want to verify. Sect. IV
describes our main contribution, namely how the model cheakd the simulator interacts in order to verify oper-
ational procedures. Then, Sect. V instantiates the geappmbach described in Sect. IV. In particular, we use the
model checker CMurphi to drive the SIMSAT simulator. Figalh Sect. VII we show experimental results on using
the described method to validate a significant operatiomedguure, described in Sect. VI.

Il. Safety Verification via Model Checking

A model checker is as a software tool that takes as input tfirititen of a dynamical system, the definition of
a property the system should satisfy and checks if duringvtdution the system can reach a state where the given
property does not hold (error state). Here we only focus éetygaroperties.

Thus a Model Checking Problem (MCP), that is the input to a @hctecker, is a tuplénit, Next, Adm, Saf¢
such that: Init is a finite set of (initial) system states; Niexa function defining the system dynamics, thatis=
Next(z, d) defines the system next staté from the system present stateand the system uncontrollable inpit
Adm(z, d) is a boolean function returning True (1) if in staténputd is admissible and returning False (0) otherwise;
Safdz) is a boolean function returning 1ifis a safe state, O otherwise.

A system run (or trace) is a (finite or infinite) sequen¢@), w(0), (1), u(1), ... z(t), u(t), z(t + 1),. .. of state-
input such that:(0) is an initial state (thatis(0) is in Init) and for eactt > 0 we have that:(t+1) = Next(x(t), u(t))
and Adm(z(t), u(t)). A counterexample is a finite system run which last sidte is unsafe, that is Safe(t)) = 0.

Given an MCR(Init, Next, Adm, Saf¢ a model checker will returnA3s if no system run contains an unsafe state
(that is one where Safe is 0)afE with a counterexample otherwise. Model checking is the j@mlof computing an
answer to an MCP.

Clearly, to enable using model checking in our setting wedrteedefine the tuplélnit, Next, Adm, Saf¢. This
is typically done using the modelling language providedhsy model checker. This means that if we want to verify
safety of an (on-board) Operational Procedure (OP) we reegtbtel all the environment it is interacting with. This
may be prohibitively expensive.

In this paper we will show how safety of an OP can be verifiedwael checking by exploiting the availability
of a satellite simulator to model the OP environment. Thisbdes us to easily define the next state function Next of
the system under verification thus enabling cost effectivenfl verification of OPs.

[ll. Modeling the System Under Verification

In this section we explain how to model an operational prace@nd its environment so as to allow verification
via model checking. Namely, Sect. lll.A describes how to gldte operational procedure environment with the
simulator. A model for operational procedures is given irtSHI.B. Disturbances are modelled in Sect. III.C.
Sect. Ill.D describes the model for the whole system undefiegtion. Then, Sects. III.E and III.F describe the
models for initial conditions and the safety properties ¢oify. Finally, Sect. 11l.G describes the model checking
problem for OP safety verification.

III.LA. Modeling the Operational Procedure Environment wit h the Simulator

We view the simulator as a black box. This is motivated by #w that indeed not all details of the models inside a
simulator may be available in a general setting. This is definthe case in our specific setting where some of the
models inside the simulator have been developed by a thitgt pad are not fully visible to the simulator users. A

simulatorM S is thus defined by a pair of functiori$’, G) computing, respectively, the simulator internal state and
the simulator observable output (telemetries in our case).

We take a discrete time approach with sampling tifhé\s usual in Computer Science, we writéor the present
value (i.e., at time&T for somek) of variablez, 2’ for the next value (i.e., at timg: + 1)7T") of z and we drop indication
of T'. Thus we haver’ = F(z,u,d) andy = G(x) where:z is the simulator state;’ is the next simulator state;is
the simulator input (telecommands in our caskis the disturbance input (modelling external events suda@dss);

y is the simulator output (telemetries in our case).

Control inputu does not change during the interVe’, (k + 1)77, that is, it is always:. This stems from the fact
that the speed of variation of the control input is finite siiitour setting it is provided by a human operator following
the control policy defined by an Operational Procedure (ORg same holds whemis provided by a computer. In
any case there is a (positive) tiriebetween changes in the control input. That ig; thanges we must call again
and recompute accordingly.

The observable outputis just a function of the present statepresent input: and present disturbande Distur-
bance models will be introduced in Sect. 111.C.

[II.B. Operational Procedures

An Operational Procedure (OP) can be seen as a program oigséte simulator outpugy and sending a command
(TC) u to the simulator. Resting on the above considerations, waefram OP as a pair of functiofd, B) computing,
respectively, OP internal state and OP output towards thalator (i.e., telecommands in our case). We hate=
A(w,y,d) andu = B(w,y) where:w is the OP internal state (i.e., program counter, local ¥es etc);w’ is OP
next state.

The above model seems to entail that &hgeconds a telecommand is sent to the simulator. Of courgenieral
this is not the case. This can simply be handled by adding N@f<tou, meaning that nothing is sent to the
simulator.

IIl.C. Disturbances

Disturbance inputl models uncontrollable events such as faults, parametetizars, etc. In general, any event that
may influence the system operations and is not under the topentrol is modeled as an uncontrollable input, that
is a disturbance. If there were not disturbances the systette®n would be perfectly known, which is unrealistic.
A disturbance model is thus essential in order to verify ecmess of control policies (i.e., Operational Procedures
under realistic conditions. For example, a too consergadigturbance model (very few disturbances) may lead to
consider adequate a control policy that instead is not abt®pe with real world (unforeseeable) situations. On the
other hand, a too liberal disturbance model may rule out aateccontrol policies, forcing us to use a complex (and
expensive) control policy, or even preventing us from figcam adequate policy.

We model disturbances with a pair of functio@g, D) such thay’ = Q(¢, w,y,d) andD(q, w,d) = 1, whereq
is the disturbance model present state (e.g., number défimjgcted so far, time elapsed since last fault injectexd).e

When considering OP executed by a human operator the bemadithe latter should also be considered. Es-
sentially a human operator may introduce delays in the sgnafi a telecommand to the simulator. Thus the human
operator can be modelled as a disturbance that delays thx&€zBteon (for one or more time time steps) and just
sends NOP codes to the simulator.

[I1.D. System Under Verification

The system to be verified is described by the OP, the simudatarell as by the disturbance model. Thus we have:

¥ = F(x,u,d) Q)

= G(z) ()
w' = Alw,y,d))
u = B(w,y) (4)
¢ = Qlgwy,d) (5)

s.t. D(q,w,d) = 1.

Using the notation introduced in previous sections we hhee the system state ¥ = [z, w, ¢] whereas the
disturbance input ig as defined in Sect. I11.C.

Replacingu andy with their definitions (equations 4 and 2 resp.) we get:

Next(z,w,q,d) = [F(z,B(w,G(z)),d), Alw,G(x),d), Q(q,w,G(x),d)] (6)
Adm(z,w,q,d) = D(q,w,d) @)

Equations 6 and 7 define the functions Next and Adm of the tlple Next, Adm, Saf¢ representing the model
checking problem (Sect. 1) on the system under verification

Note that our system modeling is a discrete time one (withpdiagntime 7"). Since in our framework we do not
have a definition of" andG to work with, but can only use the simulator as a black box tmgote /" andG, it does
not appear that a continuous time modeling and verificatipr@ach can be pursued in our context. On the other
hand, since the human operator reaction time is a (possiylsfinite number, no relevant system behaviour appears
to be lost using a discrete time approach.

IIILE. Initial States

In general we will be interested in showing a property of gigtem when it starts from a reasonable initial state. This
models the fact the OPs are started from reasonable indgradiions. Accordingly, we assume that we are given a
finite set

Init = {(z1,w1,4q1), - -, (Tk, Wk, q) } (8)

of initial states. Of course, in general we may wish to coasidfinite sets of initial states, since many state compo-
nents may take up continuous values. However, an explicitahchecker can only handle a finite number of initial
states. Thus we only consider finite sets of initial states.

Restricting to finite sets of initial states appears realensince in our context continuous state variables mainly
represent positions (of the satellite, of the moon of the str). Variations in such values below a certain threshold
are not relevant in our context.

We also note that current manual OP testing of course onlyeadds a finite number of initial states, and indeed a
number of initial states that is much smaller than the one dehchecker will be able to handle. Thus, even restricting
to finite sets of initial states we will still improve OP quglassurance.

lIl.LF. System Properties to be Verified

We are interested in verifying safety properties definedetenetries, OP internal state and disturbance model state.
That is, invariants Infy, w, ¢) where Inv is, as usual for safety properties, a function rirapfuples of telemetries,
OP states and disturbance state into boolean values. Weatdhkitall reachable states Inv must be true. If a reachable
state is found where Inv is false (unsafe state) the modeikemewill stop and return a counterexample, that is a
sequence of events (i.e., values #)reading to the just found unsafe state. In Sect. IV we wiilistrate the model
checking approach we will consider in our setting.

Thus we have:

Safe(z,w, q) = Inv(y, w, q) = Inv(G(x), w, q). 9

Note that the above formula is in agreement with the factweatan only save and restore the simulator state and
can only observe TMgyj.

[II.G. Model Checking Problem for OP Safety Verification

Resting on the above discussion we have that the model aitepkoblem we are interest in {it, Next, Adm, Safe,
where Init, Next, Adm, Safe are as defined in equations 6-9.

IV. Model Checking Driven Simulation

In this section we present how formal verification of openadil procedures can be carried out by using a model
checker together with a simulator. In Sect. IV.A we deschibes our model checking driven simulation works. In
Sect. IV.B we show how the simulator is seen from the modetkdie In Sect. IV.C we discuss modeling issues for
the system components. Finally, in Sect. IV.D we choose aatdtecker.

[Init, Safe] [Disturbance Model]

Generated Disturbances) (

N Pass OR (Fail + Counterex)

RSN,

Model Checker NS SEEE

state ¢

(MC) +TM (1)
OP state) J

+TC (u) H t Disturbances such

uman Operatord) as faults, etcd)

TC (u)
Operational Procedure (OF) Simulator (MS)

T ™ ()

System Under Verification (SUV)

Figure 1. Model Checking Driven Simulation.

IV.A. General Description

We assume that at each time instant either we get a distwelfant the environment (e.g., a fault) or the human
operator decides to execute the next step of the OP. That isewalize all events. In our context, this is not a
restriction, as long a%’ is small enough. Note that all possible interleaving of taand human actions are still
considered. Simply we rule out simultaneous events.

In our context we assume th&tlemetriegTM) y, Telecommand§lC) u, OP statew, disturbance model statg
as well as all state are observable by the model checker.

These considerations lead to the schema in Fig. 1 where tdelrobecker acts as a malicious controller for the
SUV. That is, the model checker will try to choose sequenoed indu so as to drive the SUV to an unsafe state.
This realizes a model checking driven simulation.

The SUV, formally defined by Egs. 6 and 7, is composed by thalsitor, the OP, the human operator executing
the OP and the disturbances reaching the simulator. The &3 fEMs from the simulator while sending TCs to it.
The model checker drives the simulation by substitutinghtn@an operator (executes the next OP instruction or stays
idle) and by injecting disturbances to the simulator. Inesitd explore all possible SUV evolutions, the model checker
will suitably set simulator states.

Note that in our setting we cannot check for equality betwaenstates. In fact, this entails a deep understanding
of the simulator domain which is what we want to avoid herenggovatively we assume that any event leads to a
new-—not previously visited—state. Consequently, we ifleatstate with the sequence of events needed to reach it.
Then two states are equals if they are reached with the sagquersee of events from the same initial state. In our
context we cannot have infinite sequences of events sincal@Bgs terminate. Thus the state space explored by the
model checker in our setting is finite.

Our formal verification approach is based on using a modetladreas a driver for a given system simulator (a
satellite simulator in our context). Along the same linag,&pproach can be applied to each system whose description
is rather complicated but for which a simulator exists, awgomotive or avionic systems.

IV.B. The Simulator As Seen From The Model Checker

The model checking approach we are using in our contesgtpticit Namely, the model checker performs a simulator
state space exploration videpth First Searci{DFS). In order to allow the model checker to properly int&naith

the simulator, we need to model the simulator itself insttemodel checker. Thus we have to define the following
functions:

e A function reading an initiasimulator statesayr ead_i niti al state();
e Afunctionreading a given TMnside the current simulator state, sagad _TM) .

e A function setting the simulator state, segt _si mul at or state().

e A function giving thenext simulator state obtained by sending a $&ysi nul at or _TC_st ep() .

e Afunction giving thenext simulator state obtained by injecting a disturbarsagsi nul at or _di st ur bance
step().

Implementation of the above set of functions depends onytbiem at hand. In Sect. V.C we describe how they
are defined in our context.

IV.C. Modelling Of System Components

In order for the model checker to properly work as a drivettifigr simulation, we have to model the behavior of OPs,
the human operator, disturbances and safety propertiesir kipproach this is done by feeding the model checker with
an input file describing such models. We assume that OPs &endeistic and human operators correctly execute
OP instructions. Thus, if we ignore disturbances (e.g.t$uthere is only one source of non-determinism in OPs:
the human operator idle timethat is, the time elapsing between the execution by theadpeof two consecutive
instructions. In fact, if there are no disturbances, twocekens of a given OP only differ in the timing, that is the
time intervals elapsing between the execution of two ORuetibns. Such a non-determinism allows us to check, for
example, if in the OP constraints about the time allowed betwtwo operations (for example, small enough, or large
enough) are missing. Furthermore, when disturbances asept non-deterministic delay between OP operations
allows us to verify correctness of the interaction betweistudbances and time delay in execution of OP instructions.

IV.D. Selecting a Model Checker

First of all we note that we do not have available a systemrgesm in our setting. In fact, while we can compute
the system next state using the simulator as a black box, wetduwave a description of the function implemented by
the simulator. This rules out symbolic approaches as, fampte, those used in symbolic model checkers for hybrid
systems such as HyTech [5], UPPAAL [6], PhaVer [7]. Indeed nete that all symbolic model checkers for hybrid
systems target linear hybrid systems. If we had a descnigtidhe function implemented by the simulator it would
certainly be nonlinear. Thus, even in that case a symbopcagth may not be directly usable.

As a matter of fact, one may claim that indeed a descriptiotheffunction implemented by the simulator is
available as the source code of the program implementingithelator itself. For small systems this approach can
indeed be pursued using software model checkers like CBNIGH8wever we note that our system is all but small.
Furthermore, it will involve complex arithmetical comptitas, which typically make verification intractable for BA
based or OBDD based model checkers. See [9] for a survey bmasefmodel checking.

The above considerations have led us to focus on expliciaindteckers. Examples are SPIN [10] and CMurphi
[2, 3]. Since CMurphi has already the capability of handliimite precision (i.e., C-like) real numbers, as well as
interfaces toward external functions (like the one implatad by the simulator) we decided to base our work on
CMurphi.

V. Driving SIMSAT Simulator with CMurphi Model Checker

In this section we instantiate the general approach destiibSect. IV. In particular, we use the model checker
CMurphi to drive the SIMSAT[1] simulator. SIMSAT (Simulati Infrastructure for the Modeling of SATellites) is the
simulation infrastucture, able to host a spacecraft andrgieegment simulation, developed by EGOS[11]. Here we
use SIMSAT as an oracle to predict the next state of the gatgjistem. This removes the need to explicitly implement
a satellite model in our framework. In the remaining partho$ tsection we describe the realization of the system as
shown in Fig. 2.

V.A. System Overview

From an architectural point of view, the model checker amdsimulator will run in parallel as different processes.
Thus, interactions (TMs and TCs) between them are exchavigedter-process communications. Note that such
processes may also be executed on different hosts, thus woitetion takes place through a LAN. This yields the
client-serverarchitecture shown in Fig. 2. The system actors are the aimuSIMSAT, the model checker CMurphi
and a client-server interface between the simulator andnib@el checker. We name such interféddedel Checking
for Operational Procedure@MC40P)Interface

Server Side

‘ SIMSAT ‘

i

‘ MCA40P Server ‘

| A J

LAN (sockets)
Specific Language
N

-

\

‘ MC40OP Client ‘

i

‘ CMurphi Model Checker ‘
i 1 AR

Client Side

OP Dist Human Safety

Figure 2. Driving SIMSAT Simulator with CMurphi model check er.

The MC4O0P Interface acts as a protocol converter betweenr@iland SIMSAT. On theerver sidedetailed in
Sect. V.B, MC40P receives commands from the client side arnvedrds them to the simulator. MC40P then sends the
simulator answers back to the client. On tfient side detailed in Sect. V.C, MC4OP drives the simulation inteirig
with CMurphi. Inputs to the client are the OP model, the dis&ince model, the safety properties specification and the
human operator model, coded in the CMurphi input language.

Communications between MC40OP client and server use a spkxifjuage described in Sect. V.D.

The formal verification process is carried out using a DFShenSIMSAT simulator state space, as detailed in
Sect. V.E.

V.B. Server side

We supply the MC40P interface with a set of functionalitideveing to control the SIMSAT simulator. Namely we
can:startandhalt a simulationsaveandload a breakpointsetandgeta SIMSAT item, i.e. TCs, parameters or TMs.
The ability to set an item is needed in order to inject fadupg changing values in the simulation model, as well as to
be able to send TCs and receive TMs.

V.C. Client side

The MC4O0P client supplies the model checker with the fumetiies needed to interface with the simulator, explained
in Sect. IV.B. Moreover, the client side of the architectooatains the models for OPs, disturbances, human operator
and safety properties to verify. The set of functions areé@mented as follows.

The simulator state consists ®élemetrie{TMs) values (which may be retrieved by the OP, and thus frioen t
model checker) as well as SIMSAT state files (cabbegbkpoint$. Since each breakpointis a huge file (order of MBs),
which prevents whole breakpoints sending from SIMSAT torttealel checker (especially when they run on different
hosts), and since the internal structure of each breakpoindt known (some of the models inside the simulator
have been developed by a third party), only breakpaiateescan be seen by the model checker. Breakpoint names
univocally identify states on SIMSAT, thus in the followimge will consider them equivalent.

Functionread_i ni ti al _st at e() takes as input an indexand returns the name of theh initial simulator
state file name. The rationale is that a number of meaningftidi scenario is prepared in files on the simulator
machine. Functiomead_i ni ti al _st at e() returns the name of theth of such files. In this way we can easily
handle the case in which many initial states are possible.

Functionr ead _TM) takes as input the current simulator state file naaaed a TM namg. It then returns the
value of TMj in states.

Functionset _si mul at or _st at e() takes as input a simulator state file nagend sets the current simulator
state tos.

Functionsi mul at or _TC.st ep() takes as input the current simulator state nama TelecommandTC) ¢
given by the OP, and a timE, and returns as output the simulator state nahefter 7" time units, as a result of

executing TG:. Note that the actual SIMSAT state file fgris saved on the host where SIMSAT is running, while the
model checker only gets the state file namesfor

Functionsi nul at or _di st ur bance_st ep() takes as input the current simulator state napsedisturbance
d, and a timel’, and returns as output the simulator state nahadterT time units, as a result of injecting disturbance
dons.

In our setting not all system states are observable, $fhumil at or _TC_st ep() andsi nul at or _di st ur -
bance_st ep() return a fresh name each time that they are called. Of counsayi very well be the case that two
different sequences of events lead to the same state. @oimgjdlifferent such states returns correct results aibeit
duplicates the work since the computation goes througassthat have already been considered. Methods to correctly
and efficiently detect duplicate states may be an interg$tirther development for the present study.

V.D. Client-Server Communication Language

MC4O0P client and server communicate by using a specific laggu It consists of six commands, detailed in the
following.

e RUN TC T _Slice Cnd [Param
Function: Executes a simulation time slice with a command. Namelyends the commanthd, ii) starts the
simulation, iii) waitsT_Sl i ce milliseconds and iv) stops the simulation

Example: Start simulation switch on Heater 032 and stops after 10reec&®UN_TC 10000 Z44AD
Returns: RUN_TC DONE

e RUN NOP T Slice

Function: Executes a simulation time slice. Namely: i) starts the &tin, ii) waitsT_SI i ce milliseconds
and iv) stops the simulation
Example: Start simulation and stops after 10 secori®IN_NOP 10000

Returns: RUN_NOP DONE
e SET P Nane Val ue

Function: Sets parameté¥ane to valueVal ue
Example: Set parameter S.TTC.SBT1.Loopto 1@ET_PS. TTC. SBT1. Loop 100
Returns: SET_P DONE

e GET_P TM Pkt TM Nane

Function: Gets value of TM parameter name
Example: Get value of parameter TOS@ET_P STCUL T057
Returns: GET_P DONE Val ue

e SAVE BRK | d

Function: Saves a breakpoint, which name is built froih.
Example: SAVE BRK 2
Returns: SAVE_BRK DONE

e RESTORE_BRK I d

Function: Restores a breakpoint, which name is built frbch
Example: RESTORE_BRK 98
Returns: RESTORE_BRK DONE

V.E. \Verification Process

At the beginning of the verification process, the OP to be kbécthe disturbance model (both faults and human
operator) and the invariants to check are loaded (see Fighen the model checker performs a depth first search on
the finite simulator state space, using the simulator as e&m&ahally, CMurphi checks whether each read simulator
state is safe against the input safety properties or naingaan error flag if this is not the case. In this latter case, a
counterexample is returned.

This process ends when all reachable SIMSAT states aredisit CMurphi. Since in our context simulator states
are finite, the described procedure will always end.

VI. A Case Study

MoDEL oF OP To validate the above approach we have applied it to thie-tfarant operational procedure
TenmpCtr () in Lst. 1, aiming at driving the temperature of a satellitaee inside a certain region. We describe
TenpCtr () using a PASCAL like pseudo-programming language (simdahé& CMurphi input language). The pur-
pose of such a procedure is to drive TlWLHeat er _Tenp to a value between3 and25. This is done by properly
sending TCIC_Heat er On or TC_Heat er .OF f .

We want our procedure to be robust with respect to failurgbénthermistors. In fact, if failures in sensors are
not adequately handled we may reach an unsafe state. Fopkxabroken thermistor returrst0°C. If we keep
heating until we reach the target temperature without ctamsig the fact that a thermistor may be broken we actually
reach unsafe temperatures since, being the resistor stuek04C, we would be heating indefinitely. To avoid this
kind of problems sensor faults should be always considerédeé OP. Of course a safe approach could be to turn
everything off as soon as a fault is detected. However thiten too conservative. For example, in our case we
have two thermistorsTHR.057_GT_01 (index 1), andTHR.058_GT_02 (index 2). Thus the best approach, to avoid
unnecessarily turning off the heating process, is to deaig®P that exploits both of them. This is done in OP
TempCtr () shownin Lst. 1.

OPTenmpCt r () makes 5 attempts (counted by variabknt at i ve to drive the temperature within the desired
interval. The temperature itself is measured by telemdi)(TM.Heat er _Tenp. If after 5 attempts the temperature
is still outside the desired range then the procedure repdtilure. If the measured temperature is belot9°C then
we should try to use the other thermistor if available. Iftbiitermistors are brokefenpCt r () reports a failure.

Once areliable temperature measure has been acquiredipertgure is checked. Thatis, if the measured temper-
ature is below23°C then telecommand (TA)C_Heat er _On turning the heater on is sent else TC_Heat er O f
turning the heater off is sent. After having senta TC, procedenpCt r () waits 6 minutes in order to give enough
time to the temperature to increase (heater on) or decrbasaéef off). After that, a new measure of the temperature
is taken and a check is made to see if the temperature is ireieed range of values. If this is the case the procedure
terminates successfully, else it loops for another attempt

procedure TempCQr()
begi n
tentative := 0; TMHeater _Id = 1;
begi n_| oop:
tentative :=tentative + 1;
if (tentative > 5)
then return (FAILURE); endif;
TM Heat er _Tenp : = read(TM Heater _I d);
-- check for failures in thermstors
while (TM Heat er_Tenp <= -40) do
switch (TM Heater _|d)
case 1:
TM Heater_id:= TMHeater_id + 1;
TM Heat er _Tenp : = read(TM Heater _I d);
case 2:
send(TC Heater O f); return (FAILURB;
enswi t ch;
endwhi | e
-- switch heater on or off
if (TM Heater_Tenp <= 23)
then send(TC Heater _();

el se send(TC Heater_Cf);
endi f;
-- wait and read again
wai t 6 ninutes;
TM Heat er _Tenp : = read(TM Heater _I d);
-- check for failures in thernmstors
while (TM Heat er _Tenp <= -40) do
switch (TM Heater _|d)
case 1: TMHeater id:= TMHeater id + 1;
TM Heat er_Tenp : = read(TM Heater _Id);
case 2. send(TC Heater _Cf); return (FA LURDE;
enswi t ch;
endwhi | e
-- if tenperatureis in range then SUCCESS
if ((TM Heater_Tenp >= 23) and (TM Heat er_Tenp <= 25))
then return (SUCCESS;
el se got o begi n_| oop;
endi f;
end;

Listing 1. A fault-tolerant OP: TempCtr()

MODEL OF DISTURBANCES In our setting a disturbance is the breaking of a thermidtamely, as shown in Lst. 2,
the model checker can set the param&eACECRAFT. THC. Ther m st ors. THRO057_GT_01. | sFai | ed or
SPACECRAFT. THC. Ther mi st ors. THRO57_GT_02. | sFai | ed to True. The disturbance model we used in
our verification experiments asks that in each system rue thiee no more than two disturbances and that the occur-
rences of such disturbances are not too close in time.

-- precondition:
-- 1. send at nost tw ce per execution;
-- 2. disturbances not too close in ting;

SPACECRAFT. THC. Therm stors. THR 057_GT Ol IsFailed : = true;
or
SPACECRAFT. THC. Ther mi stors. THR 057_GT_02 | sFai l ed : = true;

Listing 2. A small model for disturbances

MODEL OF HUMAN OPERATOR We have defined a small model for human operator, shown irdLdtlamely, the
model checker can execute the next OP step with a TC or camdéay-or the purposes of this paper, we assume that
there are no delays from the human operator, namely the jgéeaintdl e_t i ne is set to 0. This means that we are
consideringTenpCt r () as if it were aron-board procedure

procedur e execut e_next _CP_step();
procedure stay_idle(idle tine); -- for idle_tinme seconds

Listing 3. A small model for human operator

SAFETY PROPERTIES We have defined a significant set of safety properties forlilbg@OP, listed in Lst. 4. Namely,
the safety property to be verified for procediienpCt r () is that the temperature never falls outside a given safety
interval (—50°C, 25°C] in our case) and that within the given time horizon (200 mestit our case) the OP terminates
(with success or with failure). The latter property ensuies there cannot be never-ending loops in the OP.

TM Heat er _Tenp >= -50;

TM Heat er _Tenp <= 25;

Wthin a given maxi numtinme (200 m ns) we have success or failure.
On success we have tentative <= 5;

On failure we have tentative > 5;

Listing 4. A small set of safety properties

VII. Experimental Results

In order to assess feasibility of our approach, we have egjilito the case study of Sect. VI.

Fig. 3 shows the state space (as a graph) explored by the robeeker during the verification activity. Each
node in the graph represents a simulator state, edges eeptemnsitions. Each transition (edge) is labelled with th
event causing it. NamelfRUN_NOP denotes the case in which no TC is sent to the simulator (N@BracZ44AD
denotes the event where the TC turning on the heater is sérd tomulatorGET_P denotes the reading of TMs from
the simulator. CodeBO, P1 denote, respectively telemetries for the two thermistazsnsed THR.057_GT_01 and
THR.058_GT_02).

The verification performed by CMurphi ends with no error {ttsa all reachable states satisfy the given safety
property) and the number of reachable states is very small 268) for model checking standards.

In the remaining part of this section we analyse performamméeur approach. In Sect. VII.LA we evaluate the
time saving achieved with our proposed approach with ragpeate time needed to attain the same coverage when
the simulation campaign is manually driven (rather than eh@tiecking driven as in our case). In Sect. VII.B we
evaluate the computational effort from the model checkewalsas from the simulator in order to identify possible
bottlenecks.

VII.LA. Effectiveness of the Proposed Approach

Simulation has the goal of verifying that a given OP meetsgilven specifications. Such a verification activity is
typically carried out by replacing the satellite with a siator (SIMSAT in our case) and by relying on human experts
for execution of the OP and for insertion of disturbancesglfsas faults). Note that at design time only the set of
possible faults (disturbance model) is known. The faul& thill actually be inserted during a specific simulation
campaign are only known to the personnel in charge of imjgatuch faults. That is the personnel executing the OP
does not know in advance the fault sequences that will betiege

Of course, in order to cover as many scenarios as possibig; raas of the system are considered. Each starting
from the given initial state and with a different sequencéaoft injections. To speed up the simulation it is possible
to save and later restore a system state (breakpoint). Theation can thus be started from any of such previously
saved states.

In the proposed approach the model checker replaces bothetisennel executing the OP as well as the one
inserting the faults. Note that the model checker will eisgrthe system with all possible (according to the distuckan

Figure 3. State space for verification offenpCt r () .

omniNames SimHost .exe
LaunchSimsatDae

SimsatDaemon.exe 70

15 StarsMMi.sh —— mvwﬂvy\,/

ChMurphl ——

ScriptHost.sh 0 / s
//
i 50
£ £ £
g g 4 g 1
2 1 ® =
5 ‘ 30
.| 20 0.5

0.5 0 0
0 2000 4000 6000 8000 1000012000 14000 1600018000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 1000012000 14000 1600018000
time (s) time (s) time (s)

(a) RAM usage of SIMSAT processes (b) RAM usage of only&i nHost . exe (c) RAM usage for CMurphi model checker

Figure 4. RAM usage.

model) sequences of faults. Thus the first benefits of theqeegbapproach is that of automating the execution of a
simulation campaign as well as its bookkeeping (making theieall possible sequences of faults are considered).
This will allow the personnel to focus on development ofaistince models (which are highly reusable).

Furthermore, using the proposed approach the time takehébgitulation campaign decreases. This is due to
the ability of the model to save and restore all states rehdieing the verification activity. This can be hundreds
or thousands of states. Handling such an amount of savexs s&infeasible for a human being, but it is easy for a
computer. In the following we will clarify this point usingsan example the verification activity summarized in the
state space graph shown in Fig. 3.

Eachfull path (that is a path from the root to a leaf) in the tree of Fig. 3 defia simulation run. The time taken
by a simulation run is roughly proportional to the number dfies in the full path defining it. In the following we
will compute the time (as the number of edges traversedhtalkehe manually driven simulation campaign and the
time taken by the model checker driven simulation campaigthfe case study in Sect VI. This will illustrate how the
model checking driven simulation approach saves time.

First of all, the length of all full paths is computed. For exale the leftmost path of Fig. 3 counts 15 edges,
whereas the second path counts 8 edges. Then the time talkemagual simulation campaign is proportional to the
sum of the edges of the full paths. For example, the first thi@&ihs sum td 5+ 8 = 23. For the whole state space in
Fig. 3 such a sum is 694. This computation assumes that dftépath (simulation run) is completed the simulation
is always restarted from the initial state (tree root). Qirse we may save some states (breakpoints) to avoid always
restarting from the root. Using breakpoints will decredsertumber of edges traversed and thus the simulation time.
Note however that using a manual approach we cannot harmi@any breakpoints just because their bookkeeping
becomes too complex (and boring) for a human being.

Using the model checking driven approach proposed in thpgipée time of the simulation campaign is (roughly)
proportional to the number of edges in the tree of Fig. 3, #$1268. This stems from the fact that, by exploiting the
save and restore mechanism, the model checker never gaesttwough a graph edge. With respect to the manual
approach this yields a time saving @94 — 268)/694 = 426/694 = 0.61. That is, the proposed model checking
driven simulation approach saves ab6@#o of the time needed to complete the simulation campaign.

VII.B. Performance Evaluation

In order to evaluate the performances of the proposed agipifoa the OP previously described we measured CPU
and memory usage for both the SIMSAT simulator and the mdugtker driving it. In the following we present the
results obtained.

All experiments have been carried out on a PC with 3GB RAM amd®ID Athlon 64 x2 Dual Core Processor
4600+. The operating systems was a Linux, distribution Wbd0.04LTS. We refer to this PC in the following as the
host machine. Our target scenario is one in which the simugatd the model checker run on different machines. We
reproduced such a scenario by creating on the host machimialymachine on which the SIMSAT simulator will
run. The virtual machine is configured to have 1 GB RAM, and &tDAAthlon 64 x2 Dual Core Processor 4600+.
The operating system running on the virtual machine is a Susex Enterprise SDK 9 (SLES SDK 9). Summing
up, the model checker runs on the host machine (Linux Ubu@fuhereas the simulator runs on the above virtual
machine (Linux Suse PC).

The total (system and CPU) time needed to complete verificdti the above setting was about 6 hours. In
the following we will examine how this time is spent. For thm@phi model checker we monitored the CPU and

0.4 0.10
SimHost .exe

0.040 omniames
LaunchsimsatDae
0.035 SimsatDaemon. exe 03

StartMMI.sh —— 008
ScriptHost.sh 03

ChMurphl ——

0.030

0.025 02 0.06

0.020 0.2

% cputime
% cputime
% cputime

0.015 02
0.010 0.1 0.02

0,005 01 H

0.000 0.0
0 2000 4000 6000 8000 1000012000140001600018000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 1000012000 14000 1600018000
time (s) time (s) time (s)

(a) CPU usage of SIMSAT processes (b) CPU usage of onlgi nHost . exe (c) CPU usage for CMurphi model checker

Figure 5. CPU usage.

memory usage during the verification activity. The SIMSATsIator consists of many processes. We monitored those
relevant for our purposes. Namelgmmi Nanmes, LaunchSi nsat Dae, Si nsat Daenon. exe, St art MM . sh,
Si nHost . exe eScri pt Host . sh.

MEMORY USAGE Fig. 4 shows the memory usage. In particular, Figs. 4(a) gb)l ghow the memory usage
for the SIMSAT simulator processes. Note that since the lsitouis running on a (virtual) machine with 1GB of
RAM we have that a RAM usage of 2% corresponds to about 20 MBAI¥IRNote that all simulator processes but
Si nHost . exe use a small amount of RAM (no more than 20 MB). Note moreovat, ttlnlike the other simulator
processessi nHost . exe has a memory usage that is about linearly increasing with.tifine reduction in memory
usage at time 10000 is likely due to the Java garbage caleckig. 4(c) shows the memory usage for the CMurphi
model checker. Note that since the model checker is running machine with 3GB of RAM we have that a RAM
usage of 1% corresponds to about 30MB of RAM. Thus the amduRAM taken by the model checker is constantly
small (about 30 MB). This may look strange model checkerdpaimtoriously memory eager. However we note that
in this case the number of visited states (268) is very snfaliniodel checking standards) and, although each state
(breakpoint) has a size of about 3MB, the model checker oabds to save state names (a few bytes each). For this
reason the RAM that CMurphi allocates upon starting suffioeomplete the verification task.

Summing up, Fig. 4 shows that all processes3iutHost . exe only use a small amount of RAM. On the other
hand, given enough running time, proc&srHost . exe will take all the available memory. Indeed, presently, the
amount of memory taken by this process is the main limitirggdiafor the available prototype system. We think this
is due to the fact the SIMSAT has not been designed to effigidiandle a single simulation run in which thousands
of breakpoints are saved and restored (our situation hiereduld be very useful if future versions of SIMSAT could
smoothly handle the above described scenario.

CPU UsAGE Fig. 5 shows the CPU usage. In order to compute CPU usage afcegs we proceed as follows.
EachT sample seconds (5 seconds in our setting) we measure how@Rmpeconds the process has used since the
beginning of its execution. Let CRY be such a number at sampleAt sample 0 (starting of the process) we have
CPU(0) = 0. The CPU usage CPU-usdggat sample > 0 is the fraction of the sampling time used by the process.
Thatis att > 0 we have CPU-usag® = (CPUt) — CPU(t — 1))/T.

In particular, Figs. 5(a) shows for the simulator processpsak during the initialization phases and then a very
small CPU usage. The same basically holds for the model elneak shown in Fig. 5(c). This is due the the large
amount of time spent in saving (restoring) breakpointsron(f the disk. In fact, to complete the verification activity
takes about 6 hours whereas the CPU time taken by the modkeartis just0.3 seconds.

VIIl. Conclusions

We have presented a model checking approach for the autowsadfication of satellite operational procedures
(OPs). In order to apply our approach we have to model thdlisat¢he OP, the human behavior and disturbances
within the model checker. The main obstruction to overcosn® imodel the satellite. In this paper we have shown
how to overcome this obstruction by using a suitable sinoulé&IMSAT) for the satellite. With our approach, the
model checker (CMurphi) has a twofold role: 1) to act as aatrfer the SIMSAT simulator generating disturbances
(such as faults), and 2) to model the OP human operator.

Our approach is aimed at improving reliability by suppagtautomatic exhaustive verification of OPs. In fact,
all possible simulation scenarios, that is sequences afts\(paths on our state space), are considered by the model
checker driving the simulation.

In order to assess feasibility of our approach we presentpdrnental results on a fault-tolerant on-board OP.
Our results show that we can save up to 60% of the verificaitioa tv.r.t. thesimple human driven simulation

Note that our model checking driven simulation approachbeaadopted for all safety-critical systems in which a
simulator exists, e.g. automotive, avionics, etc.

The activity carried out suggests many interesting futeeetbpments. First, easy the verification of on-board
procedures by taking as input the program (e.g., Javapckfining such a procedure. Second, improve SIMSAT
handling of save/restore activities in our scenario. Thilsavoid that SIMSAT procesSi nHost . exe fills up the
available RAM thus preventing automatic verification oflaiOPs. Third, use the system to automate the simulation
campaign of some of the control software running on the l#atel

ACKNOWLEDGEMENTS Thisresearch has been partially supported by ESA ITI AOBB7J010362 “Model Checker
Validator for Satellite Operational Procedure”.

References

I “Introduction to SIMSAT Web Page: http://www.egos.es#gartal/egos-web/products/Simulators/SIMSAT/,”
2011.

Della Penna, G., Intrigila, B., Melatti, 1., Tronci, E., ad@nturini Zilli, M., “Exploiting transition locality in
automatic verification of finite-state concurrent systérirgernational Journal on Software Tools for Technology
Transfer (STTT)Vol. 6, No. 4, 08 2004, pp. 320-341.

3 “CMurphi Web Page: http://mclab.di.uniromal.it/softe@murphi.html,” .

4 Cavaliere, F., Mari, F., Melatti, I., Minei, G., Salvo, I.tdnci, E., Verzino, G., and Yushtein, Y., “Model Checking
Satellite Operational ProcedureBAta Systems In Aerospace (DASIA), Org. EuroSpace, Can&tiace Agency,
CNES, ESA, EUMETSAT. San Anton, Malta, EuroSpatay 2011.

ot

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H., “HyTech: A MadChecker for Hybrid SystemsSoftware Tools
for Technology TransfeMol. 1, No. 1, dec 1997, pp. 110-122.

6 Larsen, K. G., Pettersson, P., and Yi, W.,PRhAL: Status and Development&omputer Aided Verification, 9th
International Conference, CAV '97, Haifa, Israel, June 22-1997, Proceeding®dited by O. Grumberg, Vol.
1254 ofLecture Notes in Computer Scien&pringer, 1997, pp. 456—459.

" Frehse, G., “PHAVer: Algorithmic Verification of Hybrid Sisms past HyTech nternational Journal on Soft-
ware Tools for Technology Transfevol. 10, No. 3, jun 2008.

8 Clarke, E., Kroening, D., and Yorav, K., “Behavioral comsizy of C and verilog programs using bounded model
checking,’Proceedings of the 40th annual Design Automation Confexed&C '03, ACM, New York, NY, USA,
2003, pp. 368-371.

9 Schlich, B. and Kowalewski, S., “Model checking C source e&ddr embedded systemdjit. J. Softw. Tools
Technol. Transf.Mol. 11, June 2009, pp. 187-202.

10 Holzmann, G. J.The SPIN model checker: Primer and reference manidtlison Wesley, 2004.

1 “EGOS ESA Ground Operating System Web Page: http://wwvs&ga.int/portal/egos-web/,”.

