
Model Checking Driven Simulation of Sat Procedures

Giovanni Verzino,∗Federico Cavaliere,∗Federico Mari,† Igor Melatti,†

Giovanni Minei,∗ Ivano Salvo,† Yuri Yushtein,‡ and Enrico Tronci†

A Satellite Operational Procedure (OP) consists of a set of instructions reading information from the satel-
lite (telemetries, TM) and sending commands to it (telecommands, TC). An OP can be executed by a human or
by a computer (on-board procedures). Typically OPs are mission critical systems since their failure may entail
hardware damages, degradation of satellite services or costly human based recovery actions. For this reason
OPs are typically thoroughly tested in order to have reasonable assurances about their correctness. Unfor-
tunately, traditional simulation based verification of OPsis highly expensive, since it requires a high amount
of time from highly skilled personnel and does not provide formal assurance about the correctness of the OP
under verification.

We show how a model checker (CMurphi) can be used to drive a satellite simulator (namely, SIMSAT). The
proposed approach has the following benefits. First, it improves OP quality assurance by automatic exhaustive
exploration of all possible simulation scenarios whereas amanually driven simulation campaign cannot offer
any formal assurance on the coverage achieved by the simulation campaign. Second, it decreases OP verifi-
cation costs by using a model checker to automatically drive(via fault injections) the simulator. The model
checker will record the considered simulation scenarios and automatically generate fresh (i.e., not previously
considered) scenarios automatically stopping when all meaningful scenarios have been considered. Third, our
approach allows humans to focus on the design of disturbancemodels (e.g., how many faults it makes sense to
consider, when such faults may occur, etc.) which are highlyreusable across verification of similar OPs.

We implemented a prototype system by interfacing the CMurphi model checker to the SIMSAT simulator.
Our experimental results show the feasibility of the proposed approach.

I. Introduction

MOTIVATIONS Building a satellite, getting it into orbit and then maintaining it from the ground control facility is
a big financial endeavor. When orbiting, satellites are controlled from the ground by means of satelliteOperational
Procedures(OPs), executed byhuman operators. OPs consist of a set of instructions reading information from the
satellite (telemetries, TM) and sending commands to it (telecommands, TC).

OPs aremission critical. In fact, OPs failure may entail hardware damages, degradation of satellite services as
well as costly human based recovery actions. Verification ofOPs is thus needed in order to avoid failures. How-
ever, traditional simulation based verification of OPs is highly expensive, since it requires a huge amount of time of
highly skilled personnel. The previous considerations motivate research on methods and tools that allow automatic
verification of OPs. This is the focus of the present paper.

CONTRIBUTION In this paper we present a model checking based approach for the automatic verification of OPs.
Our approach is aimed atimproving OP quality assuranceby automatic exhaustive exploration of all possible sim-
ulation scenarios. Moreover, our solution aims atdecreasing OP verification time(and thus cost) by using a model
checker to automatically drive (via fault injections) the simulator. Finally, our approach allows humans to focus on the
design of disturbance models–e.g. how many faults are allowed, etc.–which are highly reusable across similar OPs.

Since we use model checking for OPs verification, we need a model for the satellite. Unfortunately, modeling the
satellite from scratch using a model checker input languageis prohibitively expensive. We overcome this obstruction
by exploiting availability of satellite models inside a satellite simulator, namely the SIMSAT simulator[1].

∗Telespazio S.p.A., PSC Napoli, Via Gianturco 31, 80146 Napoli, Italy, Emails: {federico.cavaliere,giovanni.minei,
giovanni.verzino}@telespazio.com. Contact point: Giovanni Verzino.

†Computer Science Department, Sapienza University of Rome,Via Salaria 113, 00198 Roma, Italy, Emails:{mari,melatti,salvo,
tronci}@di.uniroma1.it. Contact point: Enrico Tronci.

‡Systems, Software & Technology Department, ESA/ESTEC, Keplerlaan 1, PO Box 299, 2200AG Noordwijk, The Netherlands, Email:
Yuri.Yushtein@esa.int



We choose CMurphi[2, 3] as the model checker suitable for thecontext of this paper. The model checker role is
twofold. First, it acts as adriver for the simulator. To this end, the model checker reads the simulator state on one side
and, on the other side, it feeds the simulator withdisturbances. Second, the model checker models the OP and the
human operator behavior. For example, the time needed by theoperator to send telecommands to the satellite could
affect the procedure result itself. Thus it must be taken into consideration by the model checker.

RELATED WORK In this paper we extend our previous results [4] by formulating a more general formal framework
including a model for disturbances. Moreover we apply our approach to a fault-tolerant on-board OP.

PAPER OVERVIEW In Sect. II we give an overview on the model checking problem.In Sect. III we describe how to
model the system under verification, together with the initial settings and the properties we want to verify. Sect. IV
describes our main contribution, namely how the model checker and the simulator interacts in order to verify oper-
ational procedures. Then, Sect. V instantiates the generalapproach described in Sect. IV. In particular, we use the
model checker CMurphi to drive the SIMSAT simulator. Finally, in Sect. VII we show experimental results on using
the described method to validate a significant operational procedure, described in Sect. VI.

II. Safety Verification via Model Checking

A model checker is as a software tool that takes as input the definition of a dynamical system, the definition of
a property the system should satisfy and checks if during itsevolution the system can reach a state where the given
property does not hold (error state). Here we only focus on safety properties.

Thus a Model Checking Problem (MCP), that is the input to a model checker, is a tuple(Init, Next, Adm, Safe)
such that: Init is a finite set of (initial) system states; Next is a function defining the system dynamics, that is,x′ =
Next(x, d) defines the system next statex′, from the system present statex and the system uncontrollable inputd;
Adm(x, d) is a boolean function returning True (1) if in statex inputd is admissible and returning False (0) otherwise;
Safe(x) is a boolean function returning 1 ifx is a safe state, 0 otherwise.

A system run (or trace) is a (finite or infinite) sequencex(0), u(0), x(1), u(1), . . . x(t), u(t), x(t+ 1), . . . of state-
input such thatx(0) is an initial state (that isx(0) is in Init) and for eacht ≥ 0 we have thatx(t+1) = Next(x(t), u(t))
and Adm(x(t), u(t)). A counterexample is a finite system run which last statex(t) is unsafe, that is Safe(x(t)) = 0.

Given an MCP(Init, Next, Adm, Safe) a model checker will return PASS if no system run contains an unsafe state
(that is one where Safe is 0), FAIL with a counterexample otherwise. Model checking is the problem of computing an
answer to an MCP.

Clearly, to enable using model checking in our setting we need to define the tuple(Init, Next, Adm, Safe). This
is typically done using the modelling language provided by the model checker. This means that if we want to verify
safety of an (on-board) Operational Procedure (OP) we need to model all the environment it is interacting with. This
may be prohibitively expensive.

In this paper we will show how safety of an OP can be verified viamodel checking by exploiting the availability
of a satellite simulator to model the OP environment. This enables us to easily define the next state function Next of
the system under verification thus enabling cost effective formal verification of OPs.

III. Modeling the System Under Verification

In this section we explain how to model an operational procedure and its environment so as to allow verification
via model checking. Namely, Sect. III.A describes how to model the operational procedure environment with the
simulator. A model for operational procedures is given in Sect. III.B. Disturbances are modelled in Sect. III.C.
Sect. III.D describes the model for the whole system under verification. Then, Sects. III.E and III.F describe the
models for initial conditions and the safety properties to verify. Finally, Sect. III.G describes the model checking
problem for OP safety verification.

III.A. Modeling the Operational Procedure Environment wit h the Simulator

We view the simulator as a black box. This is motivated by the fact that indeed not all details of the models inside a
simulator may be available in a general setting. This is definitely the case in our specific setting where some of the
models inside the simulator have been developed by a third party and are not fully visible to the simulator users. A



simulatorMS is thus defined by a pair of functions(F,G) computing, respectively, the simulator internal state and
the simulator observable output (telemetries in our case).

We take a discrete time approach with sampling timeT . As usual in Computer Science, we writez for the present
value (i.e., at timekT for somek) of variablez, z′ for the next value (i.e., at time(k+1)T ) of z and we drop indication
of T . Thus we have:x′ = F (x, u, d) andy = G(x) where:x is the simulator state;x′ is the next simulator state;u is
the simulator input (telecommands in our case);d is the disturbance input (modelling external events such asfaults);
y is the simulator output (telemetries in our case).

Control inputu does not change during the interval[kT, (k+1)T ], that is, it is alwaysu. This stems from the fact
that the speed of variation of the control input is finite since in our setting it is provided by a human operator following
the control policy defined by an Operational Procedure (OP).The same holds whenu is provided by a computer. In
any case there is a (positive) timeT between changes in the control input. That is, ifu changes we must callF again
and recomputex accordingly.

The observable outputy is just a function of the present statex, present inputu and present disturbanced. Distur-
bance models will be introduced in Sect. III.C.

III.B. Operational Procedures

An Operational Procedure (OP) can be seen as a program observing the simulator outputy and sending a command
(TC)u to the simulator. Resting on the above considerations, we model an OP as a pair of functions(A,B) computing,
respectively, OP internal state and OP output towards the simulator (i.e., telecommands in our case). We havew′ =
A(w, y, d) andu = B(w, y) where:w is the OP internal state (i.e., program counter, local variables, etc);w′ is OP
next state.

The above model seems to entail that anyT seconds a telecommand is sent to the simulator. Of course, ingeneral
this is not the case. This can simply be handled by adding NOP codes tou, meaning that nothing is sent to the
simulator.

III.C. Disturbances

Disturbance inputd models uncontrollable events such as faults, parameter variations, etc. In general, any event that
may influence the system operations and is not under the operator control is modeled as an uncontrollable input, that
is a disturbance. If there were not disturbances the system evolution would be perfectly known, which is unrealistic.
A disturbance model is thus essential in order to verify correctness of control policies (i.e., Operational Procedures)
under realistic conditions. For example, a too conservative disturbance model (very few disturbances) may lead to
consider adequate a control policy that instead is not able to cope with real world (unforeseeable) situations. On the
other hand, a too liberal disturbance model may rule out adequate control policies, forcing us to use a complex (and
expensive) control policy, or even preventing us from finding an adequate policy.

We model disturbances with a pair of functions(Q,D) such thatq′ = Q(q, w, y, d) andD(q, w, d) = 1, whereq
is the disturbance model present state (e.g., number of faults injected so far, time elapsed since last fault injected, etc.).

When considering OP executed by a human operator the behaviour of the latter should also be considered. Es-
sentially a human operator may introduce delays in the sending of a telecommand to the simulator. Thus the human
operator can be modelled as a disturbance that delays the OP execution (for one or more time time steps) and just
sends NOP codes to the simulator.

III.D. System Under Verification

The system to be verified is described by the OP, the simulatoras well as by the disturbance model. Thus we have:

x′ = F (x, u, d) (1)

y = G(x) (2)

w′ = A(w, y, d) (3)

u = B(w, y) (4)

q′ = Q(q, w, y, d) (5)

s.t. D(q, w, d) = 1.

Using the notation introduced in previous sections we have that the system state isX = [x,w, q] whereas the
disturbance input isd as defined in Sect. III.C.



Replacingu andy with their definitions (equations 4 and 2 resp.) we get:

Next(x,w, q, d) = [F (x,B(w,G(x)), d), A(w,G(x), d), Q(q, w,G(x), d)] (6)

Adm(x,w, q, d) = D(q, w, d) (7)

Equations 6 and 7 define the functions Next and Adm of the tuple(Init, Next, Adm, Safe) representing the model
checking problem (Sect. II) on the system under verification.

Note that our system modeling is a discrete time one (with sampling timeT ). Since in our framework we do not
have a definition ofF andG to work with, but can only use the simulator as a black box to computeF andG, it does
not appear that a continuous time modeling and verification approach can be pursued in our context. On the other
hand, since the human operator reaction time is a (possibly small) finite number, no relevant system behaviour appears
to be lost using a discrete time approach.

III.E. Initial States

In general we will be interested in showing a property of our system when it starts from a reasonable initial state. This
models the fact the OPs are started from reasonable initial conditions. Accordingly, we assume that we are given a
finite set

Init = {(x1, w1, q1), . . . , (xk, wk, qk)} (8)

of initial states. Of course, in general we may wish to consider infinite sets of initial states, since many state compo-
nents may take up continuous values. However, an explicit model checker can only handle a finite number of initial
states. Thus we only consider finite sets of initial states.

Restricting to finite sets of initial states appears reasonable since in our context continuous state variables mainly
represent positions (of the satellite, of the moon of the sun, etc). Variations in such values below a certain threshold
are not relevant in our context.

We also note that current manual OP testing of course only addresses a finite number of initial states, and indeed a
number of initial states that is much smaller than the one a model checker will be able to handle. Thus, even restricting
to finite sets of initial states we will still improve OP quality assurance.

III.F. System Properties to be Verified

We are interested in verifying safety properties defined on telemetries, OP internal state and disturbance model state.
That is, invariants Inv(y, w, q) where Inv is, as usual for safety properties, a function mapping tuples of telemetries,
OP states and disturbance state into boolean values. We ask that for all reachable states Inv must be true. If a reachable
state is found where Inv is false (unsafe state) the model checker will stop and return a counterexample, that is a
sequence of events (i.e., values ford) leading to the just found unsafe state. In Sect. IV we will illustrate the model
checking approach we will consider in our setting.

Thus we have:
Safe(x,w, q) = Inv(y, w, q) = Inv(G(x), w, q). (9)

Note that the above formula is in agreement with the fact thatwe can only save and restore the simulator state and
can only observe TMs (y).

III.G. Model Checking Problem for OP Safety Verification

Resting on the above discussion we have that the model checking problem we are interest in is(Init, Next, Adm, Safe),
where Init, Next, Adm, Safe are as defined in equations 6–9.

IV. Model Checking Driven Simulation

In this section we present how formal verification of operational procedures can be carried out by using a model
checker together with a simulator. In Sect. IV.A we describehow our model checking driven simulation works. In
Sect. IV.B we show how the simulator is seen from the model checker. In Sect. IV.C we discuss modeling issues for
the system components. Finally, in Sect. IV.D we choose a model checker.



Init, Safe

Simulator (MS)Operational Procedure (OP)

System Under Verification (SUV)

Disturbance Model

Model Checker
(MC)

Disturbances such

Pass OR (Fail + Counterex)

OP state (w)
+ TC (u)

TM (y)

Human Operator (d)

TC (u)

Generated Disturbances (q)

as faults, etc (d)

MS state (x)
+ TM (y)

Figure 1. Model Checking Driven Simulation.

IV.A. General Description

We assume that at each time instant either we get a disturbance form the environment (e.g., a fault) or the human
operator decides to execute the next step of the OP. That is weserialize all events. In our context, this is not a
restriction, as long asT is small enough. Note that all possible interleaving of faults and human actions are still
considered. Simply we rule out simultaneous events.

In our context we assume thatTelemetries(TM) y, Telecommands(TC) u, OP statew, disturbance model stateq,
as well as all statex are observable by the model checker.

These considerations lead to the schema in Fig. 1 where the model checker acts as a malicious controller for the
SUV. That is, the model checker will try to choose sequences for d andu so as to drive the SUV to an unsafe state.
This realizes a model checking driven simulation.

The SUV, formally defined by Eqs. 6 and 7, is composed by the simulator, the OP, the human operator executing
the OP and the disturbances reaching the simulator. The OP reads TMs from the simulator while sending TCs to it.
The model checker drives the simulation by substituting thehuman operator (executes the next OP instruction or stays
idle) and by injecting disturbances to the simulator. In order to explore all possible SUV evolutions, the model checker
will suitably set simulator states.

Note that in our setting we cannot check for equality betweentwo states. In fact, this entails a deep understanding
of the simulator domain which is what we want to avoid here. Conservatively we assume that any event leads to a
new–not previously visited–state. Consequently, we identify a state with the sequence of events needed to reach it.
Then two states are equals if they are reached with the same sequence of events from the same initial state. In our
context we cannot have infinite sequences of events since OPsalways terminate. Thus the state space explored by the
model checker in our setting is finite.

Our formal verification approach is based on using a model checker as a driver for a given system simulator (a
satellite simulator in our context). Along the same lines, our approach can be applied to each system whose description
is rather complicated but for which a simulator exists, e.g.automotive or avionic systems.

IV.B. The Simulator As Seen From The Model Checker

The model checking approach we are using in our context isexplicit. Namely, the model checker performs a simulator
state space exploration viaDepth First Search(DFS). In order to allow the model checker to properly interact with
the simulator, we need to model the simulator itself inside the model checker. Thus we have to define the following
functions:

• A function reading an initialsimulator state, sayread initial state();

• A function reading a given TMinside the current simulator state, sayread TM().

• A function setting the simulator state, sayset simulator state().



• A function giving thenext simulator state obtained by sending a TC, saysimulator TC step().

• A function giving thenext simulator state obtained by injecting a disturbance, saysimulator disturbance
step().

Implementation of the above set of functions depends on the system at hand. In Sect. V.C we describe how they
are defined in our context.

IV.C. Modelling Of System Components

In order for the model checker to properly work as a driver forthe simulation, we have to model the behavior of OPs,
the human operator, disturbances and safety properties. Inour approach this is done by feeding the model checker with
an input file describing such models. We assume that OPs are deterministic and human operators correctly execute
OP instructions. Thus, if we ignore disturbances (e.g. faults), there is only one source of non-determinism in OPs:
the human operator idle time, that is, the time elapsing between the execution by the operator of two consecutive
instructions. In fact, if there are no disturbances, two executions of a given OP only differ in the timing, that is the
time intervals elapsing between the execution of two OP instructions. Such a non-determinism allows us to check, for
example, if in the OP constraints about the time allowed between two operations (for example, small enough, or large
enough) are missing. Furthermore, when disturbances are present non-deterministic delay between OP operations
allows us to verify correctness of the interaction between disturbances and time delay in execution of OP instructions.

IV.D. Selecting a Model Checker

First of all we note that we do not have available a system description in our setting. In fact, while we can compute
the system next state using the simulator as a black box, we donot have a description of the function implemented by
the simulator. This rules out symbolic approaches as, for example, those used in symbolic model checkers for hybrid
systems such as HyTech [5], UPPAAL [6], PhaVer [7]. Indeed, we note that all symbolic model checkers for hybrid
systems target linear hybrid systems. If we had a description of the function implemented by the simulator it would
certainly be nonlinear. Thus, even in that case a symbolic approach may not be directly usable.

As a matter of fact, one may claim that indeed a description ofthe function implemented by the simulator is
available as the source code of the program implementing thesimulator itself. For small systems this approach can
indeed be pursued using software model checkers like CBMC [8]. However we note that our system is all but small.
Furthermore, it will involve complex arithmetical computations, which typically make verification intractable for SAT
based or OBDD based model checkers. See [9] for a survey on software model checking.

The above considerations have led us to focus on explicit model checkers. Examples are SPIN [10] and CMurphi
[2, 3]. Since CMurphi has already the capability of handlingfinite precision (i.e., C-like) real numbers, as well as
interfaces toward external functions (like the one implemented by the simulator) we decided to base our work on
CMurphi.

V. Driving SIMSAT Simulator with CMurphi Model Checker

In this section we instantiate the general approach described in Sect. IV. In particular, we use the model checker
CMurphi to drive the SIMSAT[1] simulator. SIMSAT (Simulation Infrastructure for the Modeling of SATellites) is the
simulation infrastucture, able to host a spacecraft and ground segment simulation, developed by EGOS[11]. Here we
use SIMSAT as an oracle to predict the next state of the satellite system. This removes the need to explicitly implement
a satellite model in our framework. In the remaining part of this section we describe the realization of the system as
shown in Fig. 2.

V.A. System Overview

From an architectural point of view, the model checker and the simulator will run in parallel as different processes.
Thus, interactions (TMs and TCs) between them are exchangedvia inter-process communications. Note that such
processes may also be executed on different hosts, thus communication takes place through a LAN. This yields the
client-serverarchitecture shown in Fig. 2. The system actors are the simulator SIMSAT, the model checker CMurphi
and a client-server interface between the simulator and themodel checker. We name such interfaceModel Checking
for Operational Procedures(MC4OP)Interface.



Specific Language

OP SafetyDist Human

MC4OP Client

MC4OP Server

Server Side

SIMSAT

Client Side

CMurphi Model Checker

LAN (sockets)

Figure 2. Driving SIMSAT Simulator with CMurphi model check er.

The MC4OP Interface acts as a protocol converter between CMurphi and SIMSAT. On theserver side, detailed in
Sect. V.B, MC4OP receives commands from the client side and forwards them to the simulator. MC4OP then sends the
simulator answers back to the client. On theclient side, detailed in Sect. V.C, MC4OP drives the simulation interfacing
with CMurphi. Inputs to the client are the OP model, the disturbance model, the safety properties specification and the
human operator model, coded in the CMurphi input language.

Communications between MC4OP client and server use a specific language described in Sect. V.D.
The formal verification process is carried out using a DFS on the SIMSAT simulator state space, as detailed in

Sect. V.E.

V.B. Server side

We supply the MC4OP interface with a set of functionalities allowing to control the SIMSAT simulator. Namely we
can:start andhalt a simulation;saveandload a breakpoint;setandgeta SIMSAT item, i.e. TCs, parameters or TMs.
The ability to set an item is needed in order to inject failures by changing values in the simulation model, as well as to
be able to send TCs and receive TMs.

V.C. Client side

The MC4OP client supplies the model checker with the functionalities needed to interface with the simulator, explained
in Sect. IV.B. Moreover, the client side of the architecturecontains the models for OPs, disturbances, human operator
and safety properties to verify. The set of functions are implemented as follows.

The simulator state consists ofTelemetries(TMs) values (which may be retrieved by the OP, and thus from the
model checker) as well as SIMSAT state files (calledbreakpoints). Since each breakpoint is a huge file (order of MBs),
which prevents whole breakpoints sending from SIMSAT to themodel checker (especially when they run on different
hosts), and since the internal structure of each breakpointis not known (some of the models inside the simulator
have been developed by a third party), only breakpointsnamescan be seen by the model checker. Breakpoint names
univocally identify states on SIMSAT, thus in the followingwe will consider them equivalent.

Functionread initial state() takes as input an indexi and returns the name of thei-th initial simulator
state file name. The rationale is that a number of meaningful initial scenario is prepared in files on the simulator
machine. Functionread initial state() returns the name of thei-th of such files. In this way we can easily
handle the case in which many initial states are possible.

Functionread TM() takes as input the current simulator state file names and a TM namej. It then returns the
value of TMj in states.

Functionset simulator state() takes as input a simulator state file names and sets the current simulator
state tos.

Functionsimulator TC step() takes as input the current simulator state names, a Telecommand(TC) c
given by the OP, and a timeT , and returns as output the simulator state names′ afterT time units, as a result of



executing TCc. Note that the actual SIMSAT state file fors′ is saved on the host where SIMSAT is running, while the
model checker only gets the state file name fors′.

Functionsimulator disturbance step() takes as input the current simulator state names, a disturbance
d, and a timeT , and returns as output the simulator state names′ afterT time units, as a result of injecting disturbance
d ons.

In our setting not all system states are observable, thussimulator TC step() andsimulator distur-
bance step() return a fresh name each time that they are called. Of course it may very well be the case that two
different sequences of events lead to the same state. Considering different such states returns correct results albeitit
duplicates the work since the computation goes through states that have already been considered. Methods to correctly
and efficiently detect duplicate states may be an interesting further development for the present study.

V.D. Client-Server Communication Language

MC4OP client and server communicate by using a specific language. It consists of six commands, detailed in the
following.

• RUN_TC T_Slice Cmd [Param]

Function: Executes a simulation time slice with a command. Namely: i) sends the commandCmd, ii) starts the
simulation, iii) waitsT_Slice milliseconds and iv) stops the simulation

Example: Start simulation switch on Heater 032 and stops after 10 seconds:RUN_TC 10000 Z44AD

Returns: RUN_TC DONE

• RUN_NOP T_Slice

Function: Executes a simulation time slice. Namely: i) starts the simulation, ii) waitsT_Slice milliseconds
and iv) stops the simulation

Example: Start simulation and stops after 10 seconds:RUN_NOP 10000

Returns: RUN_NOP DONE

• SET_P Name Value

Function: Sets parameterName to valueValue

Example: Set parameter S.TTC.SBT1.Loop to 100:SET_P S.TTC.SBT1.Loop 100

Returns: SET_P DONE

• GET_P TM_Pkt TM_Name

Function: Gets value of TM parameter name

Example: Get value of parameter T057:GET_P STCU1 T057

Returns: GET_P DONE Value

• SAVE_BRK Id

Function: Saves a breakpoint, which name is built fromId.

Example: SAVE_BRK 2

Returns: SAVE_BRK DONE

• RESTORE_BRK Id

Function: Restores a breakpoint, which name is built fromId.

Example: RESTORE_BRK 98

Returns: RESTORE_BRK DONE



V.E. Verification Process

At the beginning of the verification process, the OP to be checked, the disturbance model (both faults and human
operator) and the invariants to check are loaded (see Fig. 1). Then the model checker performs a depth first search on
the finite simulator state space, using the simulator as a model. Finally, CMurphi checks whether each read simulator
state is safe against the input safety properties or not, raising an error flag if this is not the case. In this latter case, a
counterexample is returned.

This process ends when all reachable SIMSAT states are visited by CMurphi. Since in our context simulator states
are finite, the described procedure will always end.

VI. A Case Study

MODEL OF OP To validate the above approach we have applied it to the fault-tolerant operational procedure
TempCtr() in Lst. 1, aiming at driving the temperature of a satellite heater inside a certain region. We describe
TempCtr() using a PASCAL like pseudo-programming language (similar to the CMurphi input language). The pur-
pose of such a procedure is to drive TMTM Heater Temp to a value between23 and25. This is done by properly
sending TCsTC Heater On or TC Heater Off.

We want our procedure to be robust with respect to failures inthe thermistors. In fact, if failures in sensors are
not adequately handled we may reach an unsafe state. For example, a broken thermistor returns−40◦C. If we keep
heating until we reach the target temperature without considering the fact that a thermistor may be broken we actually
reach unsafe temperatures since, being the resistor stuck at −40◦C, we would be heating indefinitely. To avoid this
kind of problems sensor faults should be always considered in the OP. Of course a safe approach could be to turn
everything off as soon as a fault is detected. However this isoften too conservative. For example, in our case we
have two thermistors:THR 057 GT 01 (index 1), andTHR 058 GT 02 (index 2). Thus the best approach, to avoid
unnecessarily turning off the heating process, is to designan OP that exploits both of them. This is done in OP
TempCtr() shown in Lst. 1.

OPTempCtr() makes 5 attempts (counted by variabletentative to drive the temperature within the desired
interval. The temperature itself is measured by telemetry (TM) TM Heater Temp. If after 5 attempts the temperature
is still outside the desired range then the procedure reports a failure. If the measured temperature is below−40◦C then
we should try to use the other thermistor if available. If both thermistors are brokenTempCtr() reports a failure.

Once a reliable temperature measure has been acquired the temperature is checked. That is, if the measured temper-
ature is below23◦C then telecommand (TC)TC Heater On turning the heater on is sent else TCTC Heater Off
turning the heater off is sent. After having sent a TC, procedureTempCtr() waits 6 minutes in order to give enough
time to the temperature to increase (heater on) or decrease (heater off). After that, a new measure of the temperature
is taken and a check is made to see if the temperature is in the desired range of values. If this is the case the procedure
terminates successfully, else it loops for another attempt.

procedure TempCtr()
begin
tentative := 0; TM_Heater_Id = 1;

begin_loop:
tentative := tentative + 1;
if (tentative > 5)
then return (FAILURE); endif;

TM_Heater_Temp := read(TM_Heater_Id);
-- check for failures in thermistors
while (TM_Heater_Temp <= -40) do
switch (TM_Heater_Id)
case 1:
TM_Heater_id := TM_Heater_id + 1;
TM_Heater_Temp := read(TM_Heater_Id);

case 2:
send(TC_Heater_Off); return (FAILURE);

enswitch;
endwhile
-- switch heater on or off
if (TM_Heater_Temp <= 23)
then send(TC_Heater_On);



else send(TC_Heater_Off);
endif;
-- wait and read again
wait 6 minutes;
TM_Heater_Temp := read(TM_Heater_Id);
-- check for failures in thermistors
while (TM_Heater_Temp <= -40) do
switch (TM_Heater_Id)
case 1: TM_Heater_id := TM_Heater_id + 1;

TM_Heater_Temp := read(TM_Heater_Id);
case 2: send(TC_Heater_Off); return (FAILURE);

enswitch;
endwhile
-- if temperature is in range then SUCCESS
if ((TM_Heater_Temp >= 23) and (TM_Heater_Temp <= 25))
then return (SUCCESS);
else goto begin_loop;

endif;
end;

Listing 1. A fault-tolerant OP: TempCtr()

MODEL OF DISTURBANCES In our setting a disturbance is the breaking of a thermistor.Namely, as shown in Lst. 2,
the model checker can set the parameterSPACECRAFT.THC.Thermistors.THR 057 GT 01.IsFailed or
SPACECRAFT.THC.Thermistors.THR 057 GT 02.IsFailed to True. The disturbance model we used in
our verification experiments asks that in each system run there are no more than two disturbances and that the occur-
rences of such disturbances are not too close in time.

-- precondition:
-- 1. send at most twice per execution;
-- 2. disturbances not too close in time;

SPACECRAFT.THC.Thermistors.THR_057_GT_01.IsFailed := true;
or
SPACECRAFT.THC.Thermistors.THR_057_GT_02.IsFailed := true;

Listing 2. A small model for disturbances

MODEL OF HUMAN OPERATOR We have defined a small model for human operator, shown in Lst.3. Namely, the
model checker can execute the next OP step with a TC or can stayidle. For the purposes of this paper, we assume that
there are no delays from the human operator, namely the parameteridle time is set to 0. This means that we are
consideringTempCtr() as if it were anon-board procedure.

procedure execute_next_OP_step();
procedure stay_idle(idle_time); -- for idle_time seconds

Listing 3. A small model for human operator

SAFETY PROPERTIES We have defined a significant set of safety properties for the above OP, listed in Lst. 4. Namely,
the safety property to be verified for procedureTempCtr() is that the temperature never falls outside a given safety
interval ([−50◦C,25◦C] in our case) and that within the given time horizon (200 minutes in our case) the OP terminates
(with success or with failure). The latter property ensuresthat there cannot be never-ending loops in the OP.

TM_Heater_Temp >= -50;
TM_Heater_Temp <= 25;
Within a given maximum time (200 mins) we have success or failure.
On success we have tentative <= 5;
On failure we have tentative > 5;

Listing 4. A small set of safety properties



VII. Experimental Results

In order to assess feasibility of our approach, we have applied it to the case study of Sect. VI.
Fig. 3 shows the state space (as a graph) explored by the modelchecker during the verification activity. Each

node in the graph represents a simulator state, edges represent transitions. Each transition (edge) is labelled with the
event causing it. Namely,RUN NOP denotes the case in which no TC is sent to the simulator (NOP action), Z44AD
denotes the event where the TC turning on the heater is sent tothe simulator,GET P denotes the reading of TMs from
the simulator. CodesP0, P1 denote, respectively telemetries for the two thermistors we used (THR 057 GT 01 and
THR 058 GT 02).

The verification performed by CMurphi ends with no error (that is, all reachable states satisfy the given safety
property) and the number of reachable states is very small (i.e., 268) for model checking standards.

In the remaining part of this section we analyse performances of our approach. In Sect. VII.A we evaluate the
time saving achieved with our proposed approach with respect to the time needed to attain the same coverage when
the simulation campaign is manually driven (rather than model checking driven as in our case). In Sect. VII.B we
evaluate the computational effort from the model checker aswell as from the simulator in order to identify possible
bottlenecks.

VII.A. Effectiveness of the Proposed Approach

Simulation has the goal of verifying that a given OP meets thegiven specifications. Such a verification activity is
typically carried out by replacing the satellite with a simulator (SIMSAT in our case) and by relying on human experts
for execution of the OP and for insertion of disturbances (such as faults). Note that at design time only the set of
possible faults (disturbance model) is known. The faults that will actually be inserted during a specific simulation
campaign are only known to the personnel in charge of injecting such faults. That is the personnel executing the OP
does not know in advance the fault sequences that will be injected.

Of course, in order to cover as many scenarios as possible, many runs of the system are considered. Each starting
from the given initial state and with a different sequence offault injections. To speed up the simulation it is possible
to save and later restore a system state (breakpoint). The simulation can thus be started from any of such previously
saved states.

In the proposed approach the model checker replaces both thepersonnel executing the OP as well as the one
inserting the faults. Note that the model checker will exercise the system with all possible (according to the disturbance

Figure 3. State space for verification ofTempCtr().



(a) RAM usage of SIMSAT processes (b) RAM usage of onlySimHost.exe (c) RAM usage for CMurphi model checker

Figure 4. RAM usage.

model) sequences of faults. Thus the first benefits of the proposed approach is that of automating the execution of a
simulation campaign as well as its bookkeeping (making surethat all possible sequences of faults are considered).
This will allow the personnel to focus on development of disturbance models (which are highly reusable).

Furthermore, using the proposed approach the time taken by the simulation campaign decreases. This is due to
the ability of the model to save and restore all states reached during the verification activity. This can be hundreds
or thousands of states. Handling such an amount of saved states is infeasible for a human being, but it is easy for a
computer. In the following we will clarify this point using as an example the verification activity summarized in the
state space graph shown in Fig. 3.

Eachfull path (that is a path from the root to a leaf) in the tree of Fig. 3 defines a simulation run. The time taken
by a simulation run is roughly proportional to the number of edges in the full path defining it. In the following we
will compute the time (as the number of edges traversed) taken by the manually driven simulation campaign and the
time taken by the model checker driven simulation campaign for the case study in Sect VI. This will illustrate how the
model checking driven simulation approach saves time.

First of all, the length of all full paths is computed. For example the leftmost path of Fig. 3 counts 15 edges,
whereas the second path counts 8 edges. Then the time taken bya manual simulation campaign is proportional to the
sum of the edges of the full paths. For example, the first two full paths sum to15+8 = 23. For the whole state space in
Fig. 3 such a sum is 694. This computation assumes that after afull path (simulation run) is completed the simulation
is always restarted from the initial state (tree root). Of course we may save some states (breakpoints) to avoid always
restarting from the root. Using breakpoints will decrease the number of edges traversed and thus the simulation time.
Note however that using a manual approach we cannot handle too many breakpoints just because their bookkeeping
becomes too complex (and boring) for a human being.

Using the model checking driven approach proposed in this paper the time of the simulation campaign is (roughly)
proportional to the number of edges in the tree of Fig. 3, thatis 268. This stems from the fact that, by exploiting the
save and restore mechanism, the model checker never goes twice through a graph edge. With respect to the manual
approach this yields a time saving of(694 − 268)/694 = 426/694 = 0.61. That is, the proposed model checking
driven simulation approach saves about60% of the time needed to complete the simulation campaign.

VII.B. Performance Evaluation

In order to evaluate the performances of the proposed approach for the OP previously described we measured CPU
and memory usage for both the SIMSAT simulator and the model checker driving it. In the following we present the
results obtained.

All experiments have been carried out on a PC with 3GB RAM and an AMD Athlon 64 x2 Dual Core Processor
4600+. The operating systems was a Linux, distribution Ubuntu 10.04LTS. We refer to this PC in the following as the
host machine. Our target scenario is one in which the simulator and the model checker run on different machines. We
reproduced such a scenario by creating on the host machine a virtual machine on which the SIMSAT simulator will
run. The virtual machine is configured to have 1 GB RAM, and an AMD Athlon 64 x2 Dual Core Processor 4600+.
The operating system running on the virtual machine is a SuseLinux Enterprise SDK 9 (SLES SDK 9). Summing
up, the model checker runs on the host machine (Linux Ubuntu PC) whereas the simulator runs on the above virtual
machine (Linux Suse PC).

The total (system and CPU) time needed to complete verification in the above setting was about 6 hours. In
the following we will examine how this time is spent. For the CMurphi model checker we monitored the CPU and



(a) CPU usage of SIMSAT processes (b) CPU usage of onlySimHost.exe (c) CPU usage for CMurphi model checker

Figure 5. CPU usage.

memory usage during the verification activity. The SIMSAT simulator consists of many processes. We monitored those
relevant for our purposes. Namely:omniNames, LaunchSimsatDae, SimsatDaemon.exe, StartMMI.sh,
SimHost.exe eScriptHost.sh.

MEMORY USAGE Fig. 4 shows the memory usage. In particular, Figs. 4(a) and 4(b) show the memory usage
for the SIMSAT simulator processes. Note that since the simulator is running on a (virtual) machine with 1GB of
RAM we have that a RAM usage of 2% corresponds to about 20 MB of RAM. Note that all simulator processes but
SimHost.exe use a small amount of RAM (no more than 20 MB). Note moreover that, unlike the other simulator
processes,SimHost.exe has a memory usage that is about linearly increasing with time. The reduction in memory
usage at time 10000 is likely due to the Java garbage collection. Fig. 4(c) shows the memory usage for the CMurphi
model checker. Note that since the model checker is running on a machine with 3GB of RAM we have that a RAM
usage of 1% corresponds to about 30MB of RAM. Thus the amount of RAM taken by the model checker is constantly
small (about 30 MB). This may look strange model checker being notoriously memory eager. However we note that
in this case the number of visited states (268) is very small (for model checking standards) and, although each state
(breakpoint) has a size of about 3MB, the model checker only needs to save state names (a few bytes each). For this
reason the RAM that CMurphi allocates upon starting sufficesto complete the verification task.

Summing up, Fig. 4 shows that all processes butSimHost.exe only use a small amount of RAM. On the other
hand, given enough running time, processSimHost.exe will take all the available memory. Indeed, presently, the
amount of memory taken by this process is the main limiting factor for the available prototype system. We think this
is due to the fact the SIMSAT has not been designed to efficiently handle a single simulation run in which thousands
of breakpoints are saved and restored (our situation here).It would be very useful if future versions of SIMSAT could
smoothly handle the above described scenario.

CPU USAGE Fig. 5 shows the CPU usage. In order to compute CPU usage of a process we proceed as follows.
EachT sample seconds (5 seconds in our setting) we measure how manyCPU seconds the process has used since the
beginning of its execution. Let CPU(t) be such a number at samplet. At sample 0 (starting of the process) we have
CPU(0) = 0. The CPU usage CPU-usage(t) at samplet > 0 is the fraction of the sampling time used by the process.
That is att > 0 we have CPU-usage(t) = (CPU(t) − CPU(t− 1))/T .

In particular, Figs. 5(a) shows for the simulator processesa peak during the initialization phases and then a very
small CPU usage. The same basically holds for the model checker, as shown in Fig. 5(c). This is due the the large
amount of time spent in saving (restoring) breakpoints to (from) the disk. In fact, to complete the verification activity
takes about 6 hours whereas the CPU time taken by the model checker is just0.3 seconds.

VIII. Conclusions

We have presented a model checking approach for the automatic verification of satellite operational procedures
(OPs). In order to apply our approach we have to model the satellite, the OP, the human behavior and disturbances
within the model checker. The main obstruction to overcome is to model the satellite. In this paper we have shown
how to overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. With our approach, the
model checker (CMurphi) has a twofold role: 1) to act as a driver for the SIMSAT simulator generating disturbances
(such as faults), and 2) to model the OP human operator.



Our approach is aimed at improving reliability by supporting automatic exhaustive verification of OPs. In fact,
all possible simulation scenarios, that is sequences of events (paths on our state space), are considered by the model
checker driving the simulation.

In order to assess feasibility of our approach we presented experimental results on a fault-tolerant on-board OP.
Our results show that we can save up to 60% of the verification time w.r.t. thesimple human driven simulation.

Note that our model checking driven simulation approach canbe adopted for all safety-critical systems in which a
simulator exists, e.g. automotive, avionics, etc.

The activity carried out suggests many interesting future developments. First, easy the verification of on-board
procedures by taking as input the program (e.g., Javascript) defining such a procedure. Second, improve SIMSAT
handling of save/restore activities in our scenario. This will avoid that SIMSAT processSimHost.exe fills up the
available RAM thus preventing automatic verification of large OPs. Third, use the system to automate the simulation
campaign of some of the control software running on the satellite.

ACKNOWLEDGEMENTS This research has been partially supported by ESA ITI AO6067/B00010362 “Model Checker
Validator for Satellite Operational Procedure”.

References

1 “Introduction to SIMSAT Web Page: http://www.egos.esa.int/portal/egos-web/products/Simulators/SIMSAT/,”
2011.

2 Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., andVenturini Zilli, M., “Exploiting transition locality in
automatic verification of finite-state concurrent systems,” International Journal on Software Tools for Technology
Transfer (STTT), Vol. 6, No. 4, 08 2004, pp. 320–341.

3 “CMurphi Web Page: http://mclab.di.uniroma1.it/software cmurphi.html,” .

4 Cavaliere, F., Mari, F., Melatti, I., Minei, G., Salvo, I., Tronci, E., Verzino, G., and Yushtein, Y., “Model Checking
Satellite Operational Procedures,”DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency,
CNES, ESA, EUMETSAT. San Anton, Malta, EuroSpace., May 2011.

5 Henzinger, T. A., Ho, P.-H., and Wong-Toi, H., “HyTech: A Model Checker for Hybrid Systems,”Software Tools
for Technology Transfer, Vol. 1, No. 1, dec 1997, pp. 110–122.

6 Larsen, K. G., Pettersson, P., and Yi, W., “UPPAAL: Status and Developments,”Computer Aided Verification, 9th
International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, edited by O. Grumberg, Vol.
1254 ofLecture Notes in Computer Science, Springer, 1997, pp. 456–459.

7 Frehse, G., “PHAVer: Algorithmic Verification of Hybrid Systems past HyTech,”International Journal on Soft-
ware Tools for Technology Transfer, Vol. 10, No. 3, jun 2008.

8 Clarke, E., Kroening, D., and Yorav, K., “Behavioral consistency of C and verilog programs using bounded model
checking,”Proceedings of the 40th annual Design Automation Conference, DAC ’03, ACM, New York, NY, USA,
2003, pp. 368–371.

9 Schlich, B. and Kowalewski, S., “Model checking C source code for embedded systems,”Int. J. Softw. Tools
Technol. Transf., Vol. 11, June 2009, pp. 187–202.

10 Holzmann, G. J.,The SPIN model checker: Primer and reference manual, Addison Wesley, 2004.

11 “EGOS ESA Ground Operating System Web Page: http://www.egos.esa.int/portal/egos-web/,” .


