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Abstract. Many Control Systems are indeed Software Based Control Systems,
i.e. control systems whose controller consists of control software running on a
microcontroller device. This motivates investigation on Formal Model Based De-
sign approaches for automatic synthesis of control software.
Available algorithms and tools (e.g.,QKS) may require weeks or even months of
computation to synthesize control software for large-size systems. Thismotivates
search for parallel algorithms for control software synthesis.
In this paper, we present a Map-Reduce style parallel algorithm for control soft-
ware synthesis when the controlled system (plant) is modeled as a discrete time
linear hybrid system. Furthermore we present an MPI-based implementation
PQKSof our algorithm. To the best of our knowledge, this is the first parallel
approach for control software synthesis.
We experimentally show effectiveness ofPQKSon two classical control synthe-
sis problems: the inverted pendulum and the multi-input buck DC/DC converter.
Experiments show thatPQKSefficiency is above 60%. As an example,PQKS
requires about 16 hours to complete the synthesis of control software for the
pendulum on a cluster with 60 processors, instead of the 25 days neededby the
sequential algorithm implemented inQKS.

1 Introduction

Many Embedded Systems are indeed Software Based Control Systems (SBCSs). An
SBCS consists of two main subsystems: the controller and theplant. Typically, the
plant is a physical system consisting, for example, of mechanical or electrical devices
whereas the controller consists of control software running on a microcontroller. In an
endless loop, at discrete time instants (sampling), the controller reads plant sensor out-
puts from the plant and computes commands to be sent back to plant actuators. Being
the control software discrete and the physical system typically continuous, sensor out-
puts go through an Analog-to-Digital (AD) conversion (quantization) before being read
from the control software. Analogously, controller commands need a Digital-to-Analog
(DA) conversion before being sent to plant actuators. The controller selects commands
in order to guarantee that the closed-loop system (that is, the system consisting of both
plant and controller) meets given safety and liveness specifications (System Level For-
mal Specifications).



Software generation from models and formal specifications forms the core of Model
Based Design of embedded software [1]. This approach is particularly interesting for
SBCSs since in such a case system level (formal) specifications are much easier to
define than the control software behavior itself.

1.1 Motivations

In this paper we focus on the algorithm presented in [2,3,4],which returns correct-
by-construction control software starting from system level formal specifications. This
algorithm is implemented inQKS (Quantized Kontroller Synthesizer), which takes as
input: i) a formal model of the controlled system, modeled asa Discrete Time Linear
Hybrid System (DTLHS), ii) safety and liveness requirements (goal region) and iii)b
andbu as the number of bits for, respectively, AD and DA conversions. Given this,QKS
outputs a correct-by-construction control software together with the controlled region
on which the software is guaranteed to work.

To this aim,QKS first computes a suitable finite state abstraction (control abstrac-
tion [4]) Ĥ of the DTLHS plant modelH, whereĤ depends on the quantization schema
(i.e. number of bitsb, bu needed for AD/DA conversions) and it is the plant as it can be
seen from the control software after AD conversion and before DA conversion. Then,
given an abstraction̂G of the goal statesG, it is computed a controller̂K that, starting
from any initial abstract state, driveŝH to Ĝ regardless of possible nondeterminism.
Control abstraction properties ensure thatK̂ is indeed a (quantized representation of
a) controller for the original plantH. Finally, K̂ is translated into control software (C
code).

While effective on moderate-size systems,QKS requires a huge amount of compu-
tational resources when applied to larger systems. In fact,the most critical step ofQKS
is the control abstraction̂H generation (which is responsible for more than 95% of the
overall computation, see [3]). This stems from the fact thatĤ is computed explicitly, by
solving a Mixed Integer Linear Programming (MILP) problem for each triple(x̂, û, x̂′),
wherex̂, x̂′ are abstract states of̂H andû is an abstract action of̂H. ThusQKS is based
on anhybrid approach, being bothexplicit in the abstract state space enumeration and
symbolicin the usage of MILP solvers. Since the number of abstract states is2b, being
b the number of bits needed for AD conversion of all variables describing the plant,
and since the number of abstract actions is2bu , we have thatQKS computation time is
exponential in2b+ bu. In QKS, suitable optimizations reduce the complexity to be ex-
ponential inb+ bu, and thus inb sincebu << b. However, in large-size systemsb may
be large for two typical reasons. First, since each plant state variable needs to be quan-
tized (if a state variablev is discrete, then the number of bits forv is not an input, since
⌊log2 |dom(v)|⌋ + 1 bits are needed), the number of bits is necessarily high whenthe
plant model consists of many variables. As an example, the plane collision avoidance
control system in [5] is described by 4 continuous variablesand 7 discrete variables.
Second, controllers synthesized by considering a finer quantization schema (i.e., with
an higher value ofb) usually have a better behavior with respect to non-functional re-
quirements, such asripple andset-up time. Therefore, when a high precision is required,
a large number of quantization bits must be considered.



As an example, experimental results show thatQKS takes nearly one month (25
days) of CPU time to synthesize the controller for a 26 bits quantized inverted pendulum
(which is described by only two continuous state variables,see Sect. 5.1). Moreover,
99% of those 25 days of computation is due to control abstraction generation. This may
result in a loss in terms of time-to-market in control software design whenQKS is used.

This motivates search of parallel versions ofQKSsynthesis algorithm.

1.2 Main Contributions

To overcome the computation time bottleneck inQKS, we present aMap-Reducestyle
parallel algorithm for control abstraction generation in control software synthesis.

Map-Reduce [6] is a (LISP inspired) programming paradigm advocating a form
of embarrassing parallelism for effective massive parallel processing. An implementa-
tion of such an approach is in Hadoop (e.g., see [7]). The effectiveness of the Map-
Reduce approach stems from the minimal communication overhead of embarrassing
parallelism. This motivates our goal of looking for a Map-Reduce style parallel algo-
rithm for control software synthesis from system level formal specifications.

To this aim, we design a parallel version ofQKS, that is inspired to the Map-Reduce
programming style and that we callParallel QKS (PQKS in the following).PQKS is
actually implemented using MPI (Message Passing Interface[8]) in order to exploit
the computational power available in modern computer clusters (distributed memory
model). Such an algorithm will be presented in Sect. 4, aftera discussion of the basic
notions needed to understand our approach (Sect. 2) and the description of the stan-
dalone (i.e. serial) algorithm ofQKS (Sect. 3).

We show the effectiveness ofPQKSby using it to synthesize control software for
two widely used embedded systems, namely the multi-input buck DC-DC converter [9]
and the inverted pendulum [10] benchmarks. These are challenging examples for the
automatic synthesis of correct-by-construction control software. Experimental results
on the above described benchmarks will be discussed in Sect.5. Such results show
that we achieve a nearly linear speedup w.r.t.QKS, with efficiency above 60%. As an
example,PQKSrequires about 16 hours to complete the above mentioned synthesis of
the 26-bits pendulum on a cluster with 60 processors, instead of the 25 days ofQKS.

2 Background on Control Abstraction for DTLHSs

To make this paper self-contained, in this section we brieflysummarize the notions
necessary to understand our parallel approach to control software synthesis. For more
details, we refer the reader to [4].

Guarded Constraints We denote with[n] an initial segment{1, . . . , n} of the natu-
ral numbers. We denote withX = [x1, . . . , xn] a finite sequence of variables that we
may regard, when convenient, as a set. Each variablex ranges on a known (bounded
or unbounded) intervalDx either of the reals (continuous variables) or of the integers
(discrete variables). We denote withDX the set

∏

x∈X Dx. Boolean variables are dis-
crete variables ranging on the setB = {0, 1}. If x is a boolean variable, we writēx



for (1 − x). A linear expressionover a list of variablesX is a linear combination of
variables inX with rational coefficients. Alinear constraintoverX (or simply acon-
straint) is an expression of the formL(X) ≤ b, whereL(X) is a linear expression over
X andb is a rational constant. Given a constraintC(X) and a fresh boolean variable
(guard) y 6∈ X, aguarded constrainthas either the formy → C(X) (if y thenC(X))
or ȳ → C(X) (if not y thenC(X)). A guarded predicateis a conjunction of either
constraints or guarded constraints.

Labeled Transition Systems A Labeled Transition System(LTS) is a tupleS =
(S,A, T ) whereS is a (possibly infinite) set of states,A is a (possibly infinite) set
of actions, andT : S × A × S → B is the transition relationof S. Let s ∈ S and
a ∈ A. We callself loopa transition of the form(s, a, s). A run or path for an LTSS
is a sequenceπ = s0, a0, s1, a1, s2, a2, . . . of statesst and actionsat such that∀t ≥ 0
T (st, at, st+1). The length|π| of a finite runπ is the number of actions inπ.

Discrete Time Linear Hybrid Systems A Discrete Time Linear Hybrid Systemis a
tupleH = (X, U, Y, N) where:

– X = Xr ∪ Xd is a finite sequence of real (Xr) and discrete (Xd) present state
variables. We denote withX ′ the sequence ofnext statevariables obtained by dec-
orating with′ all variables inX.

– U = Ur ∪ Ud is a finite sequence ofinput variables.
– Y = Y r ∪ Y d is a finite sequence ofauxiliary variables that are typically used to

modelmodes(e.g., from switching elements such as diodes) or “local” variables.
– N(X,U, Y,X ′) is a guarded predicate overX ∪U ∪Y ∪X ′ defining thetransition

relation (next state).

The semantics of a DTLHSH is an LTS LTS(H) = (DX ,DU , Ñ) whereÑ :
DX × DU × DX → B is a function s.t.Ñ(x, u, x′) ≡ ∃ y ∈ DY N(x, u, y, x′).

Quantizations for DTLHSs A quantization functionγ for a real intervalI = [a, b] is
a non-decreasing functionγ : I 7→ Z s.t.γ(I) is a bounded integer interval. In the fol-
lowing we will only consider quantization functionsγ s.t.: i)γ(I) = {0, . . . , 2b−1} for
someb ∈ N (number of bits); ii)γ divides the interval[a, b] into 2b equal subintervals,
so thatγ(x) = i − 1 iff x is in the i-th subinterval. Thus we will specify quantiza-
tions by only defining the number of bitsb. Finally, if I is a discrete setI ⊆ Z, then
γ(x) = x−min I.

LetH=(X,U, Y,N) be a DTLHS, andW = X ∪U ∪ Y . A quantizationQ for H
is a pair(A,Γ ), where:

– A explicitly bounds each variable inW (i.e.,A =
∧

w∈W αw ≤ w ≤ βw, with
αw, βw ∈ DW ). For eachw ∈ W , we denote withAw = [αw, βw] its admissible
regionand withAW =

∏

w∈W Aw.
– Γ is a set of mapsΓ = {γw | w ∈ W andγw is a quantization function forAw}.



Let W = [w1, . . . , wk] andv = [v1, . . . , vk] ∈ AV , with V ⊆ W . We writeΓ (v)
for the tuple[γw1

(v1), . . . , γwk
(vk)], Γ−1(v̂) for the set{v ∈ AV | Γ (v) = v̂}, and

Γ (AW ) = {Γ (v) | v ∈ AW }. Finally, we callabstract states (resp., actions)the
elements in the finite setΓ (AX) (resp.,Γ (AU )).

3 Control Abstraction Computation

As explained in Sect. 1.1, the heaviest computation step forQKS is the computation of
the control abstraction. In this section, we recall the definition of control abstraction, as
well as how it is computed byQKS.

In the following, letH = (X, U, Y, N) andQ = (A,Γ ) be, respectively, a DTLHS
and a quantization forH. We say that an abstract actionû ∈ Γ (AU ) is Q-admissible
in an abstract statêx ∈ Γ (AX) iff actions in û always maintain the plant inside its
admissible region when starting from states inx̂ (i.e., for all plant statesx ∈ Γ−1(x̂),
plant actionsu ∈ Γ−1(û), and plant statesx′, if (x, u, x′) is a transition in LTS(H)
thenx′ ∈ AX ).

Definition 1. The Q control abstraction of a DTLHSH is an LTS Ĥ =
(Γ (AX), Γ (AU ), N̂), where forN̂ the following holds:

1. each abstract transition in̂N stems from a concrete transition inN ;
2. each concrete transition(x, u, x′) in N is faithfully represented by an abstract

transition (Γ (x), Γ (u), Γ (x′)) in N̂ , provided thatΓ (x) 6= Γ (x′) and Γ (u) is
Q-admissible inΓ (x);

3. if there is no upper bound to the length of concrete paths inLTS(H) s.t. all states
are inside the counter-image of an abstract statex̂ and all actions are inside the
counter-image of an abstract action̂u, then there is an abstract self loop(x̂, û, x̂)
in N̂ .

Algorithm 1 Building a control abstraction
Input: DTLHSH = (X,U, Y,N), quantizationQ = (A,Γ ).
function ctrAbs (H,Q)
1. N̂ ← ∅

2. for all x̂ ∈ Γ (AX) do
3. N̂ ← ctrAbsAux(H,Q, x̂, N̂)
4. return (Γ (AX), Γ (AU ), N̂)

Given a quantizationQ = (A,Γ ) for a DTLHS H = (X,U, Y,N), Function
ctrAbs in Alg. 1 computes aQ-control abstraction(Γ (AX), Γ (AU ), N̂) of H fol-
lowing Def. 1. Namely, the control abstraction transition relationN̂ is incrementally
computed by starting with the empty relation (line 1) and then adding, for all abstract
stateŝx (line 2), all transitions which starts from̂x and fulfills Def. 1 (line 3). This is
done by calling the auxiliary functionctrAbsAux, which is detailed in Alg. 2. Namely,
functionctrAbsAux checks, for all abstract actionŝu (line 1) and all possible next ab-
stract stateŝx′ ∈ O (line 5), if (x̂, û, x̂′) may be added to the current̂N . Self loops are



separately handled in line 3. Note that the checks in lines 2,3 and 6, and the compu-
tation in line 4 are performed by properly defining MILP problems, which are solved
using known algorithms (available in the GLPK package).

Algorithm 2 Building a control abstraction: transitions from a given abstract state

Input: DTLHSH, quantizationQ, abstract statêx, partial control abstraction̂N .
function ctrAbsAux (H,Q, x̂, N̂)
1. for all û ∈ Γ (AU ) do
2. if ¬ Q-admissible(H,Q, x̂, û) then
3. if selfLoop(H,Q, x̂,û) then N̂ ← N̂ ∪ {(x̂, û, x̂)}
4. O ← overImg(H,Q, x̂, û)
5. for all x̂′ ∈ Γ (O) do
6. if x̂ 6= x̂′∧existsTrans(H,Q, x̂, û, x̂′) then
7. N̂←N̂ ∪ {(x̂, û, x̂′)}
8. return N̂

4 Parallel Synthesis of Control Software

In this section we present our novel parallel algorithm for the control abstraction gener-
ation of a given DTLHS. Such algorithm is a parallel version of the standalone Alg. 1.
In this way we significantly improve the performance on the control abstraction gener-
ation (which is the bottleneck ofQKS), thus obtaining a huge speedup for the whole
approach to the synthesis of control software for DTLHSs.

In the following, letH = (X, U, Y, N), Q = (A,Γ ) be, respectively, the DTLHS
and the quantization in input to our algorithm for control abstraction generation. More-
over, let b be the overall number of bits needed inQ to quantize plant states (i.e.,
b =

∑

x∈X bx, wherebx is the number of bits forγx ∈ Γ ). Finally, letp be the number
of processors available for parallel computation.

Our parallel algorithm rests on the observation that all calls to functionctrAbsAux
(see Alg. 2) are independent of each other, thus they may be performed by independent
processes without communication overhead. This observation allows us to use paral-
lel methods targetingembarrassingly parallelproblems in order to obtain a significant
speedup on the control abstraction generation phase. To this aim, we use a Map-Reduce
based parallelization technique to design a parallel version of Alg. 1. Namely, our par-
allel computation is designed as follows (see Fig. 1 for an example).

1. A masterprocess assigns (maps) the computations needed for an abstract statex̂

(i.e., the execution of a call to functionctrAbsAuxof Alg. 2) to one ofp computing
processes (workers, enumerated from 1 top). This is done in a way so that each
worker approximately handles|Γ (AX)|

p
abstract states, thus balancing the parallel

workload. Namely, abstract states are enumerated from1 to 2b, and abstract statei
is assigned to worker1 + ((i− 1) modp). We denote withΓ (i,p)(AX) ⊆ Γ (AX)
the set of abstract states mapped to workeri out of p available workers. Note that
workeri may locally decide which abstract states are inΓ (i,p)(AX) by only know-
ing i and p (together with the overall inputH andQ). This allows us to avoid



sending to each worker the explicit list of abstract states it has to work on, since it
is sufficient that the master sendsi andp (plusH andQ) to workeri.

2. Each workerworkson its abstract states partitionΓ (i,p)(AX), by callingctrAbsAux
for each abstract state in such partition. Once workeri has completed its task (i.e.,
all abstract states inΓ (i,p)(AX) have been considered), a local (partial) control
abstractionN̂i is obtained, which is sent back to the master.

3. The master collects the local control abstractions coming from the workers and
composes (reduces) them in order to obtain the desired complete control abstraction
for H. Note that, as in embarrassingly parallel tasks, communication only takes
place at the beginning and at the end of local computations.

Algorithm 3 Building a control abstraction in parallel: master process
Input: DTLHSH, quantizationQ, workers numberp
function ctrAbsMaster(H,Q, p)
1. for all i ∈ {1, . . . , p} do
2. create a worker and sendH,Q, i andp to it
3. wait to getN̂1, . . . , N̂p from workers
4. return (Γ (AX), Γ (AU ),∪

p

j=1N̂j)
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x1
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N̂

Fig. 1. Example of execution of the parallel algorithm using 3 workers on a DTLHSH =
(X,U, Y,N) and a quantizationQ for H s.t.X = [x1, x2] andQ discretizes bothx1, x2 with
two bits. In (a) the starting point is shown, where each cell correspondsto an abstract state. In
(b), functionctrAbsMastermaps the workload among the 3 workers (abstract states labeled with
i ∈ [3] are handled by workeri). In (c) each workeri computes its local control abstraction̂Ni,
which is assumed to have the shown transitions only. Finally, in (d) the masterrejoins the local
control abstractions in order to get the final one, i.e.N̂ .

Our parallel algorithm is described in Algs. 3 (for the master) and 4 (for workers).

4.1 Implementation with MPI

We actually implemented Algs. 3 and 4 inPQKSby using MPI (Message Passing In-
terface, see [8]). Since MPI is widely used, this allows us torun PQKSon nearly all
computer clusters. Note that in MPI all computing processesexecute the same program,
each one knowing its ranki and the overall number of computing processesp (Single
Program Multiple Data paradigm). Thus lines 1–2 of Alg. 3 aredirectly implemented by
the MPI framework. Moreover, in our implementation the master is not a separate node,



Algorithm 4 Building a control abstraction in parallel: worker processes
Input: DTLHSH = (X,U, Y,N), quantizationQ = (A,Γ ), indexi, workers numberp
function parCtrAbs(H,Q, i, p)
1. N̂i ← ∅

2. for all x̂ ∈ Γ (i,p)(AX) do
3. N̂i ← ctrAbsAux(H,Q, x̂, N̂i)
4. sendN̂i to the master

but it actually performs as worker with id 1 while waiting forlocal control abstractions
from other workers. Local control abstraction from other workers are collected once the
master local control abstraction (i.e.,N̂1) has been completed. This allows us to usep

nodes instead ofp+ 1, as well as to save communication time (N̂1 is already available
to the master node, thus it needs not to be sent).

Note that lines 3 and 4 of, respectively, Algs. 3 and 4 requireworkers to send their
local control abstraction to the master. Being control abstractions represented as OB-
DDs (Ordered Binary Decision Diagrams[11]), which are sparse data structures, this
step may be inefficient if implemented with a call to MPISend (as it is usually done
in MPI programs), which is designed for contiguous data. In order to makePQKSef-
ficient, MPI Send is not used. Instead, workers use known algorithms (implemented
in the CUDD package) to efficiently dump the OBDD representing their local control
abstraction on the shared filesystem. Since current MPI implementations are typically
based on a shared filesystem, this is not a limitation forPQKS. Then each computing
process calls MPIBarrier, in order to synchronize all workers with the master. After
this, the master node collects local control abstraction from workers, by reloading them
from the shared filesystem, in order to build the final global one. Consequently, when
presenting experimental results in Sect. 5, we include I/O time in communication time.
Note that communication based on shared filesystem is very common also in Map-
Reduce native implementations like Hadoop [7].

Finally, we note that Algs. 3 and 4 may conceptually be implemented on multi-
threaded systems with shared memory. However, in our implementation we use GLPK
as external library to solve MILP problems required in computations inside function
ctrAbsAux (see Alg. 2). Since GLPK is not thread-safe, we may not implement Algs. 3
and 4 on multithreaded shared memory systems.

5 Experimental Results

We implement functionsctrAbsMasterandparCtrAbsof Algs. 3 and 4 in C program-
ming language using the CUDD package for OBDD based computations and the GLPK
package for MILP problems solving, and MPI for the parallel setting and communica-
tion. The resulting tool,PQKS(Parallel QKS), extends the toolQKS [3] by replacing
functionctrAbs of Alg. 1 with functionctrAbsMasterof Alg. 3.

In this section we present experimental results obtained byusing PQKS on
two meaningful and challenging examples for the automatic synthesis of correct-by-
construction control software, namely the inverted pendulum and multi-input buck DC-



DC converter. In such experiments, we show the gain of the parallel approach with re-
spect to the serial algorithm, also providing standard measures such as communication
and I/O time.

This section is organized as follows. In Sects. 5.1 and 5.2 wewill present the
inverted pendulum and the multi-input buck DC-DC converter, on which our experi-
ments focus. In Sect. 5.3 we give the details of the experimental setting, and finally, in
Sect. 5.4, we discuss experimental results.

5.1 The Inverted Pendulum Case Study

Fig. 2. Inverted Pendulum with Sta-
tionary Pivot Point.

R

+vO
L

iD

Vn

Vn−1

Vi

V1

I
u
n

I
u
n−1

I
u
i

+v
u
n

un

D0

D1

Di

Dn−1

iL rL

+vC C

rCiC

+v
u
i

un−1

ui

+vD

...

...

I
u
1

+v
D
1

+v
D
i

+v
u
n−1 +v

D
n−1

+v
u
1 u1

Fig. 3.Multi-input Buck DC-DC converter.

The inverted pendulum [10] (see Fig. 2) is modeled by taking the angleθ and the
angular velocityθ̇ as state variables. The input of the system is the torquing force
u · F , that can influence the velocity in both directions. Here, the variableu mod-
els the direction and the constantF models the intensity of the force. Differently
from [10], we consider the problem of finding a discrete controller, whose decisions
may be only “apply the force clockwise” (u = 1), “apply the force counterclockwise”
(u = −1)”, or “do nothing” (u = 0). The behavior of the system depends on the
pendulum massm, the length of the penduluml, and the gravitational acceleration
g. Given such parameters, the motion of the system is described by the differential

equationθ̈ =
g

l
sin θ +

1

ml2
uF , which may be normalized and discretized in the fol-

lowing transition relation (beingT the sampling time constant,x1 = θ andx2 = θ̇):
N(x1, x2, u, x

′
1, x

′
2) ≡ (x′

1 = x1 + Tx2) ∧ (x′
2 = x2 + T g

l
sinx1 + T 1

ml2
uF ). Such

transition relation is not linear, as it contains the function sinx1. A linear model can be
found by under- and over-approximating the non-linear function sinx on different inter-
vals forx. Namely, we may proceed as follows [12]. First of all, in order to exploit sinus
periodicity, we consider the equationx1 = 2πyk + yα, whereyk represents the period
in whichx1 lies andyα ∈ [−π, π]3 represents the actualx1 inside a given period. Then,

we partition the interval[−π, π] in four intervals:I1 =
[

−π,−
π

2

]

, I2 =
[

−
π

2
, 0
]

, I3

=
[

0,
π

2

]

, I4 =
[π

2
, π

]

. In each intervalIi (i ∈ [4]), we consider two linear functions

f+
i (x) and andf−

i (x), such that for allx ∈ Ii, we have thatf−
i (x) ≤ sinx ≤ f+

i (x).
As an example,f+

1 (yα) = −0.637yα − 2 andf−
1 (yα) = −0.707yα − 2.373.

3 In this section we writeπ for a rational approximation of it.



Let us consider the set of fresh continuous variablesY r = {yα, ysin} and the set
of fresh discrete variablesY d = {yk, yq, y1, y2, y3, y4}, beingy1, . . . , y4 boolean vari-
ables. The DTLHS modelIF for the inverted pendulum is the tuple(X,U, Y,N),
whereX = {x1, x2} is the set of continuous state variables,U = {u} is the set of in-
put variables,Y = Y r ∪ Y d is the set of auxiliary variables, and the transition relation
N(X,U, Y,X ′) is the following guarded predicate:

(x′
1 = x1 + 2πyq + Tx2) ∧ (x′

2 = x2 + T
g

l
ysin + T

1

ml2
uF )

∧
∧

i∈[4] yi → f−
i (yα) ≤ ysin ≤ f+

i (yα)

∧
∧

i∈[4] yi → yα ∈ Ii ∧
∑

i∈[4] yi ≥ 1

∧ x1 = 2πyk + yα ∧ −π ≤ x′
1 ≤ π

Overapproximations of the system behaviour increase system nondeterminism. Since
IF dynamics overapproximates the dynamics of the non-linear model, the controllers
that we synthesize are inherentlyrobust, that is they meet the given closed loop require-
mentsnotwithstandingnondeterministic smalldisturbancessuch as variations in the
plant parameters. Tighter overapproximations of non-linear functions makes finding a
controller easier, whereas coarser overapproximations makes controllers more robust.

The typical goal for the inverted pendulum is to turn the pendulum steady to the up-
right position, starting from any possible initial position, within a given speed interval.

5.2 The Multi-input Buck DC-DC Converter Case Study

The multi-input buck DC-DC converter [9] in Fig. 3 is a mixed-mode analog circuit
converting the DC input voltage (Vi in Fig. 3) to a desired DC output voltage (vO in
Fig. 3). As an example, buck DC-DC converters are used off-chip to scale down the
typical laptop battery voltage (12-24) to the just few voltsneeded by the laptop pro-
cessor (e.g. [13]) as well as on-chip to supportDynamic Voltage and Frequency Scal-
ing (DVFS) in multicore processors (e.g. [14]). Because of its widespread use, control
schemas for buck DC-DC converters have been widely studied (e.g. see [14,13]). The
typical software based approach (e.g. see [13]) is to control the switchesu1, . . . , un in
Fig. 3 (typically implemented with a MOSFET) with a microcontroller.

In such a converter (Fig. 3), there aren power supplies with voltage valuesV1, . . . , Vn,
n switches with voltage valuesvu1 , . . . , v

u
n and current valuesIu1 , . . . , I

u
n , andn input

diodesD0, . . . , Dn−1 with voltage valuesvD0 , . . . , vDn−1 and currentiD0 , . . . , iDn−1 (in
the following, we will writevD for vD0 andiD for iD0 ).

The circuit state variables areiL andvC . However we can also use the pairiL, vO
as state variables in the DTLHS model since there is a linear relationship betweeniL,
vC andvO, namely:vO = rCR

rC+R
iL + R

rC+R
vC . We model then-input buck DC-DC

converter with the DTLHSBn = (X, U , Y , N ), with X = [iL, vO], U = [u1, . . ., un],
Y = [vD, vD1 , . . . , vDn−1, iD, Iu1 , . . ., Iun , vu1 , . . ., vun, q0, . . ., qn−1].

Finally, the transition relationN , depending on variables inX, U andY (as well as
on circuit parametersVi, R, Ron, Roff , rL, rC , L andC), may be derived from simple
circuit analysis [15]. Namely, we have the following equations:

i̇L = a1,1iL + a1,2vO + a1,3vD, v̇O = a2,1iL + a2,2vO + a2,3vD



where the coefficientsai,j depend on the circuit parametersR, rL, rC , L andC in the
following way: a1,1 = − rL

L
, a1,2 = − 1

L
, a1,3 = − 1

L
, a2,1 = R

rc+R
[− rcrL

L
+ 1

C
],

a2,2 = −1
rc+R

[ rcR
L

+ 1
C
], a2,3 = − 1

L
rcR
rc+R

. Using a discrete time model with sampling
timeT (writing x′ for x(t+ 1)) we have:

i′L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD

v′O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD.

The algebraic constraints stemming from the constitutive equations of the switching
elements are the following:

q0 → vD = RoniD

q0 → iD ≥ 0
n−1∧

i=1

qi → v
D
i = RonI

u
i

n−1∧

i=1

qi → I
u
i ≥ 0

n∧

j=1

uj → v
u
j = RonI

u
j

iL = iD +

n∑

i=1

I
u
i

q̄0 → vD = Roff iD

q̄0 → vD ≤ 0
n−1∧

i=1

q̄i → v
D
i = RoffI

u
i

n−1∧

i=1

q̄i → v
D
i ≤ 0

n∧

j=1

ūj → v
u
j = RoffI

u
j

n−1∧

i=1

vD = v
u
i + v

D
i − Vi

vD = v
u
n − Vn

The typical goal for a multi-input buck is to driveiL and vO within given goal
intervals.

5.3 Experimental Setting

All experiments have been carried out on a cluster with 4 nodes and Open MPI im-
plementation of MPI. Each node contains 4 quad-core 2.83 GHzIntel Xeon E5440
processors with 25 GB of RAM. This allows us to run fully parallel experiments by
configuring the MPI computation to use up to 16 processes per node. However, in order
not to overload each node, we run maximum 15 processes per node, thus our upper
bound for the number of processes is 60.

In the inverted pendulumIF with force intensityF , as in [10], we set pendulum
parametersl andm in such a way thatg

l
= 1 (i.e. l = g) 1

ml2
= 1 (i.e. m = 1

l2
).

As for the admissible region, we setAx1
= [−1.1π, 1.1π] (we writeπ for a rational

approximation of it) andAx2
= [−4, 4].

In the multi-input buck DC-DC converter withn inputsBn, we set constant param-
eters as follows:L = 2 · 10−4 H, rL = 0.1 Ω, rC = 0.1 Ω, R = 5 Ω, Ron = 0 Ω,
Roff = 104 Ω,C = 5 ·10−5 F, andVi = 10i V for i ∈ [n]. As for the admissible region,
we setAiL = [−4, 4] andAvO

= [−1, 7].



As for quantization, we will use an even number of bitsb, so that each state variable
of each case study is quantized withb2 bits. We recall that the number of abstract states
is exactly2b.

We runQKSandPQKSon the inverted pendulum modelIF with F = 0.5N (force
intensity), and on the multi-input buck DC-DC modelBn, with n = 5 (number of
inputs). For the inverted pendulum, we use sampling timeT = 0.01 seconds. For the
multi-input buck, we setT = 10−6 seconds. For both systems, we run experiments
varying the number of bitsb = 18, 20 (also 22 for the inverted pendulum) and the
number of processors (workers)p = 1, 10, 20, 30, 40, 50, 60. Furthermore, each single
experiment (corresponding to a(b, p) pair) is repeated 10 times, and all experimental
measures are obtained by averaging among the 10 different runs.
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Fig. 4. Inverted pendulum: speedup.
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Fig. 5. Multi-input buck: speedup.
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Fig. 6. Inverted pendulum: scaling effi-
ciency.
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Fig. 7.Multi-input buck: scaling efficiency.

In order to evaluate effectiveness of our approach, we use the following standard
measures: speedup, efficiency, communication time (in seconds) and I/O time (in sec-
onds). Thespeedupof our approach is given by the percentage ratio between the se-
rial CPU time and the parallel CPU time, i.e.Speedup = serial CPU

parallel CPU%. To evaluate
scalability of our approach, we define thescaling efficiency(or simply efficiency) as
the percentage ratio between speedup and number of processors p, i.e. Efficiency =



Speedup
p

%. W.r.t. Algs. 3 and 4, thecommunication timeis given by
∑p

i=2 ti, beingti
the time needed by workeri to communicate with the master (we recall that worker 1
coincides with the master). Essentially, eachti includes the time for MPIBarrier syn-
cronization (see Sect. 4.1) and local control abstractionN̂i sending. In agreement with
Sect. 4.1, the communication time is increased by the I/O time, that is the overall time
spent by processors in input/output activities. The I/O time measure will also be shown
separately in our experimental results.

Figs. 4, 6, 8 and 10 show, respectively, the speedup, the scaling efficiency, the com-
munication time and the I/O time of Algs. 3 and 4 as a function of p, for the inverted
pendulum withb = 18, 20, 22. Analogously, Figs. 5, 7, 9 and 11 show the same mea-
sures for the multi-input buck withb = 18, 20.

 0

 5000

 10000

 15000

 20000

 25000

 10  20  30  40  50  60

C
om

m
un

ic
at

io
n 

tim
e 

(s
ec

on
ds

)

Number of processes

18 bits
20 bits
22 bits

Fig. 8. Inverted pendulum: communication
time
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Fig. 9. Multi-input buck: communication
time
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Fig. 10.Inverted pendulum: I/O time.
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We also show the absolute values for such experiments in Tabs. 1 (for the pendu-
lum) and 2 (for the buck). Tabs. 1 and 2 have common columns. The meaning of such
common columns is as follows. Columnb is the number of bits used for quantiza-
tion. ColumnQKS reports the execution time in seconds (averaged on 10 runs, with
maximum standard deviation 0.9%) needed byQKS to compute the control abstraction
(i.e. Alg. 1). ColumnsPQKS report experimental values forPQKS. Namely, column



p shows the number of processors, columnCPU reports the execution time in seconds
(averaged on 10 runs, with maximum standard deviation 4.2%)for Alg. 3 (i.e., the mas-
ter execution time, since it wraps the overall parallel computation), columnCT shows
the communication time (averaged on 10 runs, with maximum standard deviation 21%;
we recall that I/O time is included in this measure), columnIO shows the I/O time only
(averaged on 10 runs, with maximum standard deviation 31%),columnSpeedupre-
ports the speedup and columnEfficiency reports the scaling efficiency. Finally, column
CPU K shows the execution time in seconds for the control softwaregeneration (i.e.,
the remaining computation ofQKS, after the control abstraction generation).

Table 1.Experimental Results for inverted pendulum.

QKS PQKS
b CPU p CPU CT IO Speedup EfficiencyCPUK

18 6.141e+0310 8.378e+02 1.395e+03 2.545e+00 7.330 73.2972.000e+01
18 6.141e+0320 4.650e+02 1.195e+03 4.500e+00 13.206 66.0322.000e+01
18 6.141e+0330 3.083e+02 3.477e+02 7.900e+00 19.919 66.3962.000e+01
18 6.141e+0340 2.646e+02 2.176e+03 5.400e+00 23.209 58.0222.000e+01
18 6.141e+0350 1.926e+02 7.065e+02 1.600e+01 31.885 63.7702.000e+01
18 6.141e+0360 1.642e+02 6.254e+02 1.380e+01 37.400 62.3332.000e+01
20 2.608e+0410 3.551e+03 5.800e+03 9.222e+00 7.346 73.4568.500e+01
20 2.608e+0420 1.946e+03 4.680e+03 1.460e+01 13.402 67.0088.500e+01
20 2.608e+0430 1.306e+03 1.425e+03 3.390e+01 19.978 66.5938.500e+01
20 2.608e+0440 9.981e+02 4.511e+03 2.100e+01 26.135 65.3378.500e+01
20 2.608e+0450 8.145e+02 2.889e+03 4.840e+01 32.026 64.0528.500e+01
20 2.608e+0460 6.828e+02 1.991e+03 4.590e+01 38.203 63.6728.500e+01
22 1.106e+0510 1.484e+04 2.331e+04 3.240e+01 7.457 74.5663.520e+02
22 1.106e+0520 8.055e+03 1.675e+04 5.530e+01 13.736 68.6813.520e+02
22 1.106e+0530 5.494e+03 5.923e+03 1.279e+02 20.141 67.1363.520e+02
22 1.106e+0540 4.171e+03 1.742e+04 7.960e+01 26.526 66.3143.520e+02
22 1.106e+0550 3.404e+03 1.142e+04 1.767e+02 32.503 65.0053.520e+02
22 1.106e+0560 2.861e+03 6.491e+03 1.952e+02 38.672 64.4533.520e+02

5.4 Experiments Discussion

From Figs. 4 and 5 we note that the speedup is almost linear, with a 3
5 slope. From

Figs. 6 and 7 we note that scaling efficiency remains high whenincreasing the number
of processorsp. For example, forb = 22 bits, our approach efficiency is in a range from
74% (10 processors) to 64% (60 processors). In any case, efficiency is almost always
above 60%, especially for bigger values ofb.

Figs. 8 and 9 show that communication time almost always decreases whenp in-
creases. This is motivated by the fact that, in our MPI implementation, communication
among nodes takes place mostly when workers send their localcontrol abstractions to
the master via the shared filesystem. Since in our implementation this happens only
after an MPIBarrier (i.e., the parallel computation may proceed only when all nodes



have reached an MPIBarrier statement), the communication time also includes waiting
time for workers which finishes their local computation before the other ones. Thus,
if all workers need about the same time to complete the local computation, then the
communication time is low. Note that this explains also the discontinuity when passing
from 30 to 40 nodes which may be observed in the figures above. In fact, each worker
has (almost) the same workload in terms of abstract states number, but some abstract
states may need more computation time than others (i.e., computation time of function
minCtrAbsAux in Alg. 2 may have significant variations on different abstract states).
If such “hard” abstract states are well distributed among workers, communication time
is low (with higher efficiency), otherwise it is high. Figs. 12 and 13 show such phe-
nomenon on the inverted pendulum quantized with 18 bits, when the parallel algorithm
is executed by 30 and 40 workers, respectively. In such figures, thex-axis represents
computation time, they-axis the workers, and hard abstract states are representedin
red. Indeed, in Fig. 12 hard abstract states are well distributed among workers, which
corresponds to a low communication time in Fig. 8 (and high speedup and efficiency in
Figs. 4 and 6). On the other hand, in Fig. 13 hard abstract states are mainly distributed
on only a dozen of the 40 workers (thus, about 30% of the workers performs the most
part of the total workload), which corresponds to a high communication time in Fig. 8
(and low speedup and efficiency in Figs. 4 and 6). Note that I/Otime is nearly always
at least 2 orders of magnitude less than communication time,thus hard abstract states
distribution is indeed the cause of the above described phenomenon.

Fig. 12. Details about pendulum computa-
tion time (30 nodes, 18 bits).

Fig. 13. Details about pendulum computa-
tion time (40 nodes, 18 bits).

Finally, in order to show feasibility of our approach also onDTLHSs requiring a
huge computation time to generate the control abstraction,we runPQKSon the inverted
pendulum withb = 26. We estimate the computation time for control abstraction gen-
eration forp = 1 to be 25 days. On the other hand, withp = 60, we are able to compute
the control abstraction generation in only 16 hours.

6 Related Work

Algorithms (and tools) for the automatic synthesis of control software under different
assumptions (e.g., discrete or continuous time, linear or non-linear systems, hybrid or



Table 2.Experimental Results for multi-input buck DC-DC converter.

QKS PQKS
b CPU p CPU CT IO Speedup EfficiencyCPUK

18 6.484e+0410 9.024e+03 1.666e+04 1.490e+01 7.185 71.8472.600e+01
18 6.484e+0420 4.849e+03 1.095e+04 1.850e+01 13.371 66.8542.600e+01
18 6.484e+0430 3.256e+03 3.721e+03 3.410e+01 19.914 66.3812.600e+01
18 6.484e+0440 2.460e+03 9.710e+03 2.260e+01 26.358 65.8952.600e+01
18 6.484e+0450 1.968e+03 6.677e+03 4.090e+01 32.945 65.8892.600e+01
18 6.484e+0460 1.650e+03 4.001e+03 4.240e+01 39.287 65.4782.600e+01
20 2.629e+0510 3.673e+04 6.938e+04 5.300e+01 7.159 71.5908.000e+01
20 2.629e+0520 1.962e+04 4.439e+04 7.400e+01 13.401 67.0078.000e+01
20 2.629e+0530 1.318e+04 1.484e+04 1.480e+02 19.945 66.4848.000e+01
20 2.629e+0540 9.862e+03 3.513e+04 9.000e+01 26.662 66.6548.000e+01
20 2.629e+0550 7.976e+03 2.645e+04 1.930e+02 32.966 65.9328.000e+01
20 2.629e+0560 6.697e+03 1.603e+04 1.840e+02 39.262 65.4368.000e+01

discrete systems, etc.) have been widely investigated in the last decades. As an exam-
ple, see [16,17,18,10,19,20,21,22] and citations thereof. However, no one of such ap-
proaches has a parallel version of any type, our focus here. On the other hand, parallel
algorithms have been widely investigated for formal verification (e.g., see [23,24,25]).

A parallel algorithm for control software synthesis has been presented in [26], where
however non-hybrid systems are addressed, control is obtained by Monte Carlo simu-
lation and quantization is not taken into account. Moreover, note that in literature “par-
allel controller synthesis” often refers to synthesizing parallel controllers (e.g., see [27]
and [28] and citations thereof), while here we parallelize the (offline) computation re-
quired to synthesize a standalone controller. Summing up, to the best of our knowledge,
no previous parallel algorithm for control software synthesis from formal specifications
has been published.

As discussed in Sect. 1.1, the present paper builds mainly upon the toolQKS pre-
sented in [2,3]. Other works aboutQKScomprise the following ones. In [29] it is shown
that expressing the input system as a linear predicate over aset of continuous as well
as discrete variables (as it is done inQKS) is not a limitation on the modeling power.
In [12] it is shown how non-linear systems may be modeled by using suitable lineariza-
tion techniques. The paper in [15] addresses model based synthesis of control software
by trading system level non-functional requirements (suchus optimal set-up time, rip-
ple) with software non-functional requirements (its footprint, i.e. size). The procedure
which generates the actual control software (C code) starting from a finite states au-
tomaton of a control law is described in [30]. In [31] it is shown how to automatically
generate a picture illustrating control software coverage. Finally, in [32] it is shown that
the quantized control synthesis problem underlyingQKS approach is undecidable. As
a consequence,QKS is based on a correct but non-complete algorithm. Namely,QKS
output is one of the following: i) SOL, in which case a correct-by-construction control
software is returned; ii) NOSOL, in which case no controller exists for the given spec-
ifications; iii) UNK, in which caseQKS was not able to compute a controller (but a
controller may exist).



7 Conclusions and Future Work

In this paper we presented a Map-Reduce style parallel algorithm (and its MPI im-
plementation for computer clusters,PQKS) for automatic synthesis of correct-by-
construction control software for discrete time linear hybrid systems, starting from a
formal model of the controlled system, safety and liveness requirements and number
of bits for analog-to-digital conversion. Such an algorithm significantly improves per-
formance of an existing standalone approach (implemented in the toolQKS), which
may require weeks or even months of computation when appliedto large-sized hybrid
systems.

Experimental results on two classical control synthesis problems (the inverted pen-
dulum and the multi-input buck DC/DC converter) show that our parallel approach
efficiency is above 60%. As an example, with 60 processorsPQKSoutputs the control
software for the 26-bits quantized inverted pendulum in about 16 hours, whileQKS
needs about 25 days of computation.

Future work consists in further improving the communication among processors
by making the mapping phase aware of “hard” abstract states (see Sect. 5.4), as well
as designing a parallel version for other architectures than computer clusters, such as
GPGPU architectures. Finally, future work also includes extending the presented ap-
proach so as to provide a general parallelization frameworkfor abstraction procedures
(of a suitable type).
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