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Abstract. Many Control Systems are indeed Software Based Control Systems,
i.e. control systems whose controller consists of control softwareimgron a
microcontroller device. This motivates investigation on Formal ModebBd3e-
sign approaches for automatic synthesis of control software.

Available algorithms and tools (e.g2KS) may require weeks or even months of
computation to synthesize control software for large-size systemsnidtigates
search for parallel algorithms for control software synthesis.

In this paper, we present a Map-Reduce style parallel algorithm fdralaoft-
ware synthesis when the controlled systguaft) is modeled as a discrete time
linear hybrid system. Furthermore we present an MPIl-based imptatiwn
PQKSof our algorithm. To the best of our knowledge, this is the first parallel
approach for control software synthesis.

We experimentally show effectivenessPQKSon two classical control synthe-
sis problems: the inverted pendulum and the multi-input buck DC/DC ctever
Experiments show thaPQKSefficiency is above 60%. As an exampRQKS
requires about 16 hours to complete the synthesis of control softwarkne
pendulum on a cluster with 60 processors, instead of the 25 days negdee
sequential algorithm implemented PKS.

1 Introduction

Many Embedded Systems are indeed Software Based Contrdnsy¢SBCSs). An
SBCS consists of two main subsystems: the controller angldrat. Typically, the
plant is a physical system consisting, for example, of meidad or electrical devices
whereas the controller consists of control software rugmin a microcontroller. In an
endless loop, at discrete time instargarqpling, the controller reads plant sensor out-
puts from the plant and computes commands to be sent backrbadtuators. Being
the control software discrete and the physical system &jgicontinuous, sensor out-
puts go through an Analog-to-Digital (AD) conversiajuéntizatior) before being read
from the control software. Analogously, controller commsaneed a Digital-to-Analog
(DA) conversion before being sent to plant actuators. Thdrobler selects commands
in order to guarantee that the closed-loop system (thdtéssystem consisting of both
plant and controller) meets given safety and liveness fpations (System Level For-
mal Specifications).



Software generation from models and formal specifications$ the core of Model
Based Design of embedded softwére [1]. This approach iscphatly interesting for
SBCSs since in such a case system level (formal) specifisatioe much easier to
define than the control software behavior itself.

1.1 Motivations

In this paper we focus on the algorithm presented_Inll[2,3ich returns correct-
by-construction control software starting from systeneldermal specifications. This
algorithm is implemented iIQKS (Quantized Kontroller Synthesidemhich takes as
input: i) a formal model of the controlled system, modeledd3iscrete Time Linear
Hybrid System (DTLHS), ii) safety and liveness requirensefgoal region) and iiip
andb,, as the number of bits for, respectively, AD and DA conversid@siven thisQKS
outputs a correct-by-construction control software thgetvith the controlled region
on which the software is guaranteed to work.

To this aim,QKSfirst computes a suitable finite state abstractimon(rol abstrac-
tion [4]) H of the DTLHS plant mode}, where?{ depends on the quantization schema
(i.e. number of bit$, b, needed for AD/DA conversions) and it is the plant as it can be
seen from the control software after AD conversion and leefdA conversion. Then,
given an abstractio6’ of the goal state§, it is computed a controlleK that, starting
from any initial abstract state, drivés to ¢ regardless of possible nondeterminism.
Control abstraction properties ensure thats indeed a (quantized representation of
a) controller for the original plar#. Finally, K is translated into control software (C
code).

While effective on moderate-size syster@dSrequires a huge amount of compu-
tational resources when applied to larger systems. Intfaetnost critical step oPKS
is the control abstractioR generation (which is responsible for more than 95% of the
overall computation, segl[3]). This stems from the fact #itlas computed explicitly, by
solving a Mixed Integer Linear Programming (MILP) probleon éach triplgz, @, '),
wherez, &/ are abstract states &f and is an abstract action {. ThusQKSis based
on anhybrid approach, being botéxplicitin the abstract state space enumeration and
symbolicin the usage of MILP solvers. Since the number of abstratgsia2’, being
b the number of bits needed for AD conversion of all variablesadibing the plant,
and since the number of abstract action®’is we have thafQKS computation time is
exponential ir2b + b,,.. In QKS, suitable optimizations reduce the complexity to be ex-
ponential inb + b,,, and thus i sinceb,, << b. However, in large-size systerhsnay
be large for two typical reasons. First, since each plamt stariable needs to be quan-
tized (if a state variable is discrete, then the number of bits fers not an input, since
|log, |[dom(v)|| 4+ 1 bits are needed), the number of bits is necessarily high viteen
plant model consists of many variables. As an example, theeptollision avoidance
control system in[[5] is described by 4 continuous varialsled 7 discrete variables.
Second, controllers synthesized by considering a finertqadion schema (i.e., with
an higher value ob) usually have a better behavior with respect to non-funetioe-
guirements, such agpple andset-up timeTherefore, when a high precision is required,
a large number of quantization bits must be considered.



As an example, experimental results show t@#&S takes nearly one month (25
days) of CPU time to synthesize the controller for a 26 bimized inverted pendulum
(which is described by only two continuous state variabdes, Sec{.511). Moreover,
99% of those 25 days of computation is due to control abstrageneration. This may
result in a loss in terms of time-to-market in control softevdesign wherQKSis used.

This motivates search of parallel versions@KS synthesis algorithm.

1.2 Main Contributions

To overcome the computation time bottleneclQKS, we present Map-Reducestyle
parallel algorithm for control abstraction generation émtrol software synthesis.

Map-Reduce([6] is a (LISP inspired) programming paradigmoaeting a form
of embarrassing parallelism for effective massive parallecessing. An implementa-
tion of such an approach is in Hadoop (e.g., $ee [7]). The®fness of the Map-
Reduce approach stems from the minimal communication eeertof embarrassing
parallelism. This motivates our goal of looking for a MapeRee style parallel algo-
rithm for control software synthesis from system level fatispecifications.

To this aim, we design a parallel version@KS, that is inspired to the Map-Reduce
programming style and that we c&arallel QKS (PQKSin the following). PQKSis
actually implemented using MPI (Message Passing Interf@fein order to exploit
the computational power available in modern computer etssfdistributed memory
model). Such an algorithm will be presented in Sekt. 4, a&tdiscussion of the basic
notions needed to understand our approach (8kct. 2) ancesiegition of the stan-
dalone (i.e. serial) algorithm @pKS (Sect[B).

We show the effectiveness BfQKSby using it to synthesize control software for
two widely used embedded systems, namely the multi-inpcit C-DC converter [9]
and the inverted pendulurn [10] benchmarks. These are cigatie examples for the
automatic synthesis of correct-by-construction contaftvgare. Experimental results
on the above described benchmarks will be discussed in Be8uch results show
that we achieve a nearly linear speedup WQKS, with efficiency above 60%. As an
example PQKSrequires about 16 hours to complete the above mentionetesiatof
the 26-bits pendulum on a cluster with 60 processors, idsiéthe 25 days oDKS.

2 Background on Control Abstraction for DTLHSs

To make this paper self-contained, in this section we brisfinmarize the notions
necessary to understand our parallel approach to contitwtase synthesis. For more
details, we refer the reader {d [4].

Guarded Constraints We denote withjn] an initial segmen{1, ..., n} of the natu-
ral numbers. We denote withl = [z4, ..., z,] a finite sequence of variables that we
may regard, when convenient, as a set. Each varialbbnges on a known (bounded
or unbounded) interval,, either of the reals (continuous variables) or of the integer
(discrete variables). We denote withy the set[], . D,. Boolean variables are dis-
crete variables ranging on the &t= {0,1}. If = is a boolean variable, we write



for (1 — x). A linear expressiorover a list of variablesX is a linear combination of
variables inX with rational coefficients. Ainear constraintover X (or simply acon-
straint) is an expression of the fori(X) < b, whereL(X) is a linear expression over
X andb is a rational constant. Given a constraiitX) and a fresh boolean variable
(guard) y ¢ X, aguarded constrainbas either the forny — C(X) (if y thenC (X))
org — C(X) (if not y thenC(X)). A guarded predicatés a conjunction of either
constraints or guarded constraints.

Labeled Transition Systems A Labeled Transition Systeifi TS) is a tupleS =
(S, A, T) where S is a (possibly infinite) set of states| is a (possibly infinite) set
of actions and7T : S x A x S — B is thetransition relationof S. Lets € S and
a € A. We callself loopa transition of the forn{s, a, s). A run or pathfor an LTSS
is a sequence = sg, ag, S1, a1, S2, 4, . . . Of statess, and actions:; such thatyt > 0
T(s¢, at, si+1). The lengthi| of a finite runz is the number of actions in.

Discrete Time Linear Hybrid Systems A Discrete Time Linear Hybrid Systeim a
tupleH = (X, U, Y, N) where:

- X = X" U X4 is a finite sequence of reak(") and discrete X¢) present state
variables. We denote with’ the sequence afext statevariables obtained by dec-
orating with’ all variables inX.

— U=U"UU"is afinite sequence afiput variables.

- Y =Y" U Y9is a finite sequence @uxiliary variables that are typically used to
modelmodege.qg., from switching elements such as diodes) or “locatfaldes.

— N(X,U,Y, X’) is aguarded predicate ov&U U UY U X" defining thetransition
relation (next statg

The semantics of a DTLHS{ is an LTS LTS#) = (Dx,Dy,N) whereN :
Dx x Dy x Dx — Bisafunction stN(z,u,2') =3y € Dy N(z,u,y,z’).

Quantizations for DTLHSs A quantization functiory for a real intervall = [a, b] is
a non-decreasing function: I — Z s.t.y(I) is a bounded integer interval. In the fol-
lowing we will only consider quantization functionss.t.: i)y(I) = {0,...,2°—1} for
someb € N (number of bits); iiyy divides the intervala, b] into 2° equal subintervals,
so thaty(z) = ¢ — 1 iff z is in thei-th subinterval. Thus we will specify quantiza-
tions by only defining the number of bits Finally, if I is a discrete sef C Z, then
~v(z) =z —min .

LetH=(X,U,Y,N)beaDTLHS, andV = X UU UY. A quantizationQ for H
is a pair(A4, I'), where:

— A explicitly bounds each variable iV (i.e., A = Ay aw < w < By, With
Qs Buw € Dw). For eachw € W, we denote withd,, = [a,,, B,] its admissible
regionand withAyw =[], cy Aw-

— I'isasetof map$’ = {v, | w € W and~,, is a quantization function fod,, }.



Let W = [wy,...,wg] andv = [v1,...,v;] € Ay, with V' C W. We write I'(v)
for the tuple[yw, (v1), - - -, Ya,, (vi)], I'~1(d) for the set{v € Ay | I'(v) = o}, and
I'(Aw) = {I'(v) | v € Aw}. Finally, we callabstract states (resp., actiontf)e
elements in the finite sdt(Ax) (resp..]"(Ay)).

3 Control Abstraction Computation

As explained in Seck. 1.1, the heaviest computation stef8is the computation of
the control abstraction. In this section, we recall the dtidim of control abstraction, as
well as how it is computed b@KS.

In the following, letH = (X, U, Y, N)andQ = (A, I') be, respectively, a DTLHS
and a gquantization foi. We say that an abstract actione I'(Ay) is Q-admissible
in an abstract staté € I'(Ax) iff actions in @ always maintain the plant inside its
admissible region when starting from stategiti.e., for all plant states € I'~1(%),
plant actionsu € I'~1(4), and plant states’, if (z,u,2’) is a transition in LT$H)
thenz’ € Ax).

Definition 1. TheAQ control apstraction of a DTLHSH is an LTS H =
(I'(Ax),I'(Ay), N), where forN the following holds:

1. each abstract transition ifV' stems from a concrete transition i¥;

2. each concrete transitiof, u,z’) in N is faithfully represented by an abstract
transition (I'(z), I'(u), I'(z')) in N, provided thatl"(z) # I'(2’) and I'(u) is
Q-admissible inl"(x);

3. if there is no upper bound to the length of concrete patHsSI®B(#) s.t. all states
are inside the counter-image of an abstract statand all actions are inside the
counter-image of an abstract actian then there is an abstract self lo@p, i, &)
in V.

Algorithm 1 Building a control abstraction

Input: DTLHSH = (X, U,Y, N), quantization® = (A, I').
function ctrAbs (H, Q)

1. N«o

2. forall £ € I'(Ax) do

3. N « ctrAbsAuxH, Q, &, N)

4. return (I'(Ax), I'(Ay), N)

Given a quantizatior@ = (A,I") for a DTLHSH = (X,U,Y, N), Function
ctrAbs in Alg. [l computes aQ-control abstractiofI'(Ax), I'(Ay), N) of # fol-
lowing Def.[1. Namely, the control abstraction transiti@ation NV is incrementally
computed by starting with the empty relation (Il[de 1) anchthdding, for all abstract
statest (line[d), all transitions which starts fro and fulfills Def.[1 (line[B). This is
done by calling the auxiliary functiootrAbsAux, which is detailed in Algi.2. Namely,
function ctrAbsAux checks, for all abstract actioris(line[d) and all possible next ab-
stract state$’ € O (line[8), if (z, 4, 2’) may be added to the curreit. Self loops are



separately handled in liné 3. Note that the checks in [hé&ahd 6, and the compu-
tation in line[4 are performed by properly defining MILP pretnis, which are solved
using known algorithms (available in the GLPK package).

Algorithm 2 Building a control abstraction: transitions from a giverstaact state

Input: DTLHS H, quantizationQ, abstract statg, partial control abstractiofV.
function ctrAbsAux(#, Q, z, N)

1. forall & € I'(Av) do

2. if = Q-admissibléH, Q, &, 1) then
3 if selfLoog(H,Q, #,u) then N < N U {(&,,2)}
4, O «+ overlmgH, Q, &, 4)
5. forall ' € I'(O) do
6
7
8.

if & # @' NexistsTranéH, Q, &, 4, %) then
. N« NU{(2,4,2)}
return N

4 Parallel Synthesis of Control Software

In this section we present our novel parallel algorithm Far tontrol abstraction gener-
ation of a given DTLHS. Such algorithm is a parallel versidthe standalone Ald.]1.
In this way we significantly improve the performance on thetow abstraction gener-
ation (which is the bottleneck apKS), thus obtaining a huge speedup for the whole
approach to the synthesis of control software for DTLHSs.

In the following, letH = (X, U, Y, N), Q = (A, I') be, respectively, the DTLHS
and the quantization in input to our algorithm for contro$ttbction generation. More-
over, letb be the overall number of bits needed ¢ghto quantize plant states (i.e.,
b=>",cx bz, Whereb, is the number of bits fofy, € I). Finally, letp be the number
of processors available for parallel computation.

Our parallel algorithm rests on the observation that alsdal functionctrAbsAux
(see Alg[2) are independent of each other, thus they maytherped by independent
processes without communication overhead. This observatiows us to use paral-
lel methods targetingmbarrassingly parallebroblems in order to obtain a significant
speedup on the control abstraction generation phase.daithi we use a Map-Reduce
based parallelization technigue to design a parallel @arsf Alg.[d. Namely, our par-
allel computation is designed as follows (see Elg. 1 for angxe).

1. A masterprocess assignsn@aps the computations needed for an abstract state
(i.e., the execution of a call to functiartrAbsAux of Alg. P)) to one ofp computing
processesworkers enumerated from 1 tp). This is done in a way so that each
worker approximately handlew abstract states, thus balancing the parallel

workload. Namely, abstract states are enumerated from2®, and abstract state
is assigned to worker + ((i — 1) modp). We denote with"(?) (Ax) C I'(Ax)
the set of abstract states mapped to workeut of p available workers. Note that
workeri may locally decide which abstract states aré'{h*) (A y ) by only know-
ing ¢ and p (together with the overall input, and Q). This allows us to avoid



sending to each worker the explicit list of abstract statéas to work on, since it
is sufficient that the master sendandp (plus# and Q) to workers.

2. Each workeworkson its abstract states partitidH’?) (A x ), by callingctrAbsAux
for each abstract state in such partition. Once woilkeas completed its task (i.e.,
all abstract states ii"“?)(Ax) have been considered), a local (partial) control
abstractionV; is obtained, which is sent back to the master.

3. The master collects the local control abstractions cgnfiiom the workers and
composesréduce¥them in order to obtain the desired complete control abstna
for H. Note that, as in embarrassingly parallel tasks, commtinitanly takes
place at the beginning and at the end of local computations.

Algorithm 3 Building a control abstraction in parallel: master process
Input: DTLHS #, quantizationQ, workers numbep
function ctrAbsMaster(H, Q, p)

1. forall i € {1,...,p} do

2. create a worker and seftfl Q, ¢ andp to it

3. wait to getVy, . .., N, from workers

4. return (I'(Ax), I'(Av), U}, Nj)
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Fig. 1. Exéarznple of execution of tf% parallel algorithm Lﬁg)ing 3 workers on a((BTI}HS:
(X,U,Y, N) and a quantizatio® for  s.t. X = [z1,z2] and Q discretizes bottx;, z; with
two bits. In (a) the starting point is shown, where each cell corresptnds abstract state. In
(b), functionctrAbsMastemaps the workload among the 3 workers (abstract states labeled with
i € [3] are handled by workei). In (c) each workei computes its local control abstraction,
which is assumed to have the shown transitions only. Finally, in (d) the nragpérs the local
control abstractions in order to get the final one, Ne.

Our parallel algorithm is described in Alds. 3 (for the maséad 4 (for workers).

4.1 Implementation with MPI

We actually implemented Algk] 3 ahél 4 RQKSby using MPI (Message Passing In-
terface, see [8]). Since MPI is widely used, this allows usuto PQKSon nearly all
computer clusters. Note that in MPI all computing processesute the same program,
each one knowing its rankand the overall number of computing processéSingle
Program Multiple Data paradigm). Thus liné§11—2 of Alg. 3directly implemented by
the MPI framework. Moreover, in our implementation the reas not a separate node,



Algorithm 4 Building a control abstraction in parallel: worker process
Input: DTLHSH = (X, U,Y, N), quantization@ = (A4, I'), indexs, workers numbep
function parCtrAbs(H, Q, i, p)

1. ]\71 — J

2. forall & € I'“P)(Ax) do

3. N, « ctrAbsAuxH, Q, &, N;)

4. sendN; to the master

but it actually performs as worker with id 1 while waiting filocal control abstractions
from other workers. Local control abstraction from otherkews are collected once the
master local control abstraction (i.éV; ) has been completed. This allows us to pse
nodes instead qf + 1, as well as to save communication tinf&,(is already available

to the master node, thus it needs not to be sent).

Note that line§13 and 4 of, respectively, Algs. 3 ahd 4 requinekers to send their
local control abstraction to the master. Being control i@asions represented as OB-
DDs (Ordered Binary Decision Diagramd 1]]), which are sparse data structures, this
step may be inefficient if implemented with a call to M8&nd (as it is usually done
in MPI programs), which is designed for contiguous data.rtteoto makePQKSef-
ficient, MPLSend is not used. Instead, workers use known algorithmsléimgnted
in the CUDD package) to efficiently dump the OBDD represeanthreir local control
abstraction on the shared filesystem. Since current MPleémphtations are typically
based on a shared filesystem, this is not a limitation@KS Then each computing
process calls MPBatrrier, in order to synchronize all workers with the maskdter
this, the master node collects local control abstractiomfworkers, by reloading them
from the shared filesystem, in order to build the final glob#.cConsequently, when
presenting experimental results in SEtt. 5, we includeilt@ tn communication time.
Note that communication based on shared filesystem is vanyrmm also in Map-
Reduce native implementations like Hadoop [7].

Finally, we note that Algd.]3 arld 4 may conceptually be imgetad on multi-
threaded systems with shared memory. However, in our imgéation we use GLPK
as external library to solve MILP problems required in comagions inside function
ctrAbsAux (see Alg[2). Since GLPK is not thread-safe, we may not implerAlgs[3
and4 on multithreaded shared memory systems.

5 Experimental Results

We implement functionstrAbsMasterand parCtrAbsof Algs.[3 and# in C program-
ming language using the CUDD package for OBDD based compotaand the GLPK
package for MILP problems solving, and MPI for the paralkgting and communica-
tion. The resulting toolPQKS(Parallel QKS, extends the tooQKS [3] by replacing
function ctrAbs of Alg. M with function ctrAbsMasterf Alg. 3.

In this section we present experimental results obtainedusing PQKS on
two meaningful and challenging examples for the automatithesis of correct-by-
construction control software, namely the inverted pemaiuhnd multi-input buck DC-



DC converter. In such experiments, we show the gain of thallehapproach with re-
spect to the serial algorithm, also providing standard mresssuch as communication
and 1/O time.

This section is organized as follows. In Se¢ts] 5.1 5.2millepresent the
inverted pendulum and the multi-input buck DC-DC converter which our experi-
ments focus. In Sedi. 5.3 we give the details of the expetiahsetting, and finally, in
Sect[5.H, we discuss experimental results.

5.1 The Inverted Pendulum Case Study
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Fig. 2. Inverted Pendulum with Sta-
tionary Pivot Point.
Fig. 3. Multi-input Buck DC-DC converter.

The inverted pendulum [10] (see Fig. 2) is modeled by takirgangled and the
angular velocityd as state variables. The input of the system is the torquingefo
u - F, that can influence the velocity in both directions. Here ariablex mod-
els the direction and the constaAt models the intensity of the force. Differently
from [10], we consider the problem of finding a discrete colteér, whose decisions
may be only “apply the force clockwisel.(= 1), “apply the force counterclockwise”
(v = —1)", or “do nothing” (u = 0). The behavior of the system depends on the
pendulum massn, the length of the pendulurh and the gravitational acceleration
g. Given such parameters, the motion of the system is deschethe differential

1
equationd = 7 9 ing + " ——uF', which may be normalized and discretized in the fol-

lowing transition relation (bein@’ the sampling time constant; = ¢ andx2 = 0):
N(z1, 22, u, 2}, @h) = (2} =21 + Tag) A (zh = 22+ T¥sinzy + T—zuF). Such
transition relation is not linear, as it contains the fuunhm x1. A Ilnear model can be
found by under- and over-approximating the non-linear fiamcin 2 on different inter-
vals forz. Namely, we may proceed as follovis [12]. First of all, in artteexploit sinus
periodicity, we consider the equation = 27y, + y., Wherey, represents the period
in whichz, lies andy,, € [, 7r][§ represents the actua] inside a given period. Then,

we partition the interval—m, 7] in four intervals:I; = {—w, —g} I = [—g,o} , I3
= {O, g} I, = {g,w} In each intervall; ( € [4]), we consider two linear functions

f;7(z) and andf; (z), such that for all: € I;, we have thaf; (z) < sinz < f; ().
As an examplef;" (y,) = —0.637y, — 2 andf; (yo) = —0.707y, — 2.373.

% In this section we writer for a rational approximation of it.



Let us consider the set of fresh continuous variabfés= {y,, ysin} and the set
of fresh discrete variableg? = {y., v,, y1,y2, Y3, ya}, b€iNgy1, ..., y4 boolean vari-
ables. The DTLHS modelr for the inverted pendulum is the tup(&, U, Y, N),
whereX = {z1,z2} is the set of continuous state variabl&s= {u} is the set of in-
put variablesY = Y" U Y4 is the set of auxiliary variables, and the transition relati
N(X,U,Y, X') is the following guarded predicate:

1
Ysin + T—u

)
(x) =x1 4 2nyg + Tao) A () =z + T~ "

l
A /\iE Yi — f,»_(ya) < Ysin < f+(ya)
/\/\16 yz%yae—[/\21€ yi > 1

ANxy =2y +Ya N —m <z} <

F)

Overapproximations of the system behaviour increase syatmdeterminism. Since
Zr dynamics overapproximates the dynamics of the non-lineadat) the controllers
that we synthesize are inherentbpust that is they meet the given closed loop require-
mentsnotwithstandingnondeterministic smalflisturbancessuch as variations in the
plant parameters. Tighter overapproximations of nonalirfanctions makes finding a
controller easier, whereas coarser overapproximatiok&seontrollers more robust.
The typical goal for the inverted pendulum is to turn the péuaoh steady to the up-
right position, starting from any possible initial positiovithin a given speed interval.

5.2 The Multi-input Buck DC-DC Converter Case Study

The multi-input buck DC-DC converter [9] in Fid.]3 is a mixed-mode analog uiirc
converting the DC input voltagd/{ in Fig. [3) to a desired DC output voltaged in
Fig. [3). As an example, buck DC-DC converters are used dff-thscale down the
typical laptop battery voltage (12-24) to the just few voieeded by the laptop pro-
cessor (e.gl[13]) as well as on-chip to supfdaynamic Voltage and Frequency Scal-
ing (DVFS) in multicore processors (e.0.[14]). Because of itdespread use, control
schemas for buck DC-DC converters have been widely studied $ee [14,13]). The
typical software based approach (e.g. $e¢ [13]) is to cbittiteoswitchesuy, . . . , u, in
Fig.[3 (typically implemented with a MOSFET) with a micro¢uoiler.

In such a converter (Fifl] 3), there arpower supplies with voltage valué’s, coos Vi,
n switches with voltage values’, . .., v and current valuesy, ..., n, andn input
diodesDy, ..., D, with voltage values?, ... ,v2_ | and current?’, ... D, (in

the following, we will writev, for v’ andip for if).
The circuit state variables aig andvs. However we can also use the pair;, vo
as state variables in the DTLHS model since there is a liredationship betweery,,

ve andvp, namelywo = 7’;C+R ir + +va We model then-input buck DC-DC
converter with the DTLHS3,, = (X, U, Y N), with X = [ig, vol, U = [u1, ..., un],
Y =[vp,vP, ..., 0P | ip, I¥ . T 08, v, oy e Q-

Finally, the transition relatiofV, depending on variables ik, U andY (as well as
on circuit parameters;, R, R, Rog, 71, ro, L andC), may be derived from simple
circuit analysis[[15]. Namely, we have the following eqoas:

tr, = ay,1tr + a1,2v0 + a1 3vp, Vo = a2,1tL + a22V0 + a23Up



where the coefficients; ; depend on the circuit parametefsr, ¢, L andC' in the

: . _ T _ 1 _ 1 _ R TeT 1
following way: a1 = =", a12 = —7,a13 = —7, G21 = m[*TL + &l

—1 cR 1 1 (,R . . . . .
aze = ;15" + ¢l a2z = — 7. Using a discrete time model with sampling

time T (writing =’ for (¢t 4+ 1)) we have:

Z/L = (1 + T(Il’l)l'L + T(ZLQUO + TaLgl)D
vo = Tasip + (1+ Tazz)vo + Taz3vp.

The algebraic constraints stemming from the constitutygadions of the switching
elements are the following:

o — v R Go — vp = RogiD
0 D = D

G —i >00n go —vp <0

0 D >
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/\ Uj — Vj = Lflond; j=1
g=1 n—1
vp = vy -‘rUiD - Vi

n
. . ”
1, = 1p + E Iz-
=1

.
-

vp = vy — Vi

The typical goal for a multi-input buck is to drivig, and vo within given goal
intervals.

5.3 Experimental Setting

All experiments have been carried out on a cluster with 4 aatel Open MPI im-
plementation of MPI. Each node contains 4 quad-core 2.83 Bk Xeon E5440
processors with 25 GB of RAM. This allows us to run fully p&hkexperiments by
configuring the MPI computation to use up to 16 processesqug.rHowever, in order
not to overload each node, we run maximum 15 processes per, tlags our upper
bound for the number of processes is 60.

In the inverted penduluriz with force intensityF', as in [10], we set pendulum
parameters andm in such a way that = 1 (i.e.l = g) # =1(.e.m = 7).
As for the admissible region, we sdt,, = [—1.1x, 1.17] (we write 7 for a rational
approximation of it) andd,, = [—4, 4].

In the multi-input buck DC-DC converter with inputs3,,, we set constant param-
eters as followsL = 2-107*H,r, =01 Q,rc =019, R=5Q, Ry, =09,
Rog = 10*Q,C = 5-1075 F, andV; = 10i V for i € [n]. As for the admissible region,
we setd;, = [—4,4] andA4,, =[-1,7].



As for quantization, we will use an even number of bijtso that each state variable
of each case study is quantized Wgrbits. We recall that the number of abstract states
is exactly2®.

We runQKSandPQKSon the inverted pendulum modg} with ' = 0.5N (force
intensity), and on the multi-input buck DC-DC mod8),, with n = 5 (number of
inputs). For the inverted pendulum, we use sampling time 0.01 seconds. For the
multi-input buck, we sef” = 10~% seconds. For both systems, we run experiments
varying the number of bité = 18,20 (also22 for the inverted pendulum) and the
number of processors (workers)= 1, 10, 20, 30, 40, 50, 60. Furthermore, each single
experiment (corresponding to(&, p) pair) is repeated 10 times, and all experimental
measures are obtained by averaging among the 10 diffenest ru
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Fig. 4. Inverted pendulum: speedup. Fig. 5. Multi-input buck: speedup.
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ciency.

In order to evaluate effectiveness of our approach, we usdollowing standard
measures: speedup, efficiency, communication time (inrg)cand I/O time (in sec-
onds). Thespeedupf our approach is given by the percentage ratio betweenehe s
rial CPU time and the parallel CPU time, i$peedup = -l CEG-%. To evaluate
scalability of our approach, we define tkealing efficiencyor simply efficiency as

the percentage ratio between speedup and number of proggsse. Efficiency =



Speedup o W.rt. Algs.[3 and4, theommunication timés given by>"7_, ¢;, beingt;

the time needed by workérto communicate with the master (we recall that worker 1
coincides with the master). Essentially, eacincludes the time for MPBarrier syn-
cronization (see Sedf.4.1) and local control abstracNpsending. In agreement with
Sect[4.11, the communication time is increased by the I/@ titmat is the overall time
spent by processors in input/output activities. The I/Qetimeasure will also be shown
separately in our experimental results.

Figs[4[6[8 and 10 show, respectively, the speedup, thegadficiency, the com-
munication time and the 1/O time of Algsl 3 ahH 4 as a functibp,dor the inverted
pendulum withb = 18, 20, 22. Analogously, Figd. 4,179 and]11 show the same mea-
sures for the multi-input buck with = 18, 20.
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We also show the absolute values for such experiments in [Maffsr the pendu-
lum) and2 (for the buck). Tabs] 1 ahH 2 have common columns.riganing of such
common columns is as follows. Coluninis the number of bits used for quantiza-
tion. ColumnQKS reports the execution time in seconds (averaged on 10 rutts, w
maximum standard deviation 0.9%) neededd¥Sto compute the control abstraction
(i.e. Alg.[d). ColumnsPQKS report experimental values f&#QKS Namely, column



p shows the number of processors, coluBfU reports the execution time in seconds
(averaged on 10 runs, with maximum standard deviation 4fae#lg.3 (i.e., the mas-
ter execution time, since it wraps the overall parallel catapon), columrCT shows
the communication time (averaged on 10 runs, with maximamdszrd deviation 21%;
we recall that I/O time is included in this measure), colu@rshows the I/O time only
(averaged on 10 runs, with maximum standard deviation 3t@)mn Speedupre-
ports the speedup and colurifficiency reports the scaling efficiency. Finally, column
CPU K shows the execution time in seconds for the control softygareeration (i.e.,
the remaining computation @@KS, after the control abstraction generation).

Table 1. Experimental Results for inverted pendulum.

QKS PQKS
b| CPU |p CPU CT 10 Speedup EfficiencyCPU K

18/6.141e+0310 8.378e+02 1.395e+03 2.545e+00 7.330  73.222000e+0]
18/6.141e+0%20 4.650e+02 1.195e+03 4.500e+00 13.206 66.03200e+0]
18/6.141e+0330 3.083e+02 3.477e+02 7.900e+00 19.919 66.326€00e+0]
18/6.141e+0340 2.646e+02 2.176e+03 5.400e+00 23.209 58.02200e+0]
18/6.141e+030 1.926e+02 7.065e+02 1.600e+01 31.885 63.7Z2@00e+0]
18/6.141e+0360 1.642e+02 6.254e+02 1.380e+01 37.400 62.33B00e+0]
20|2.608e+0410 3.551e+03 5.800e+03 9.222e+00 7.346  73.48600e+0]
20|2.608e+0420 1.946e+03 4.680e+03 1.460e+01 13.402 67.08500e+0]
20/2.608e+0430 1.306e+03 1.425e+03 3.390e+01 19.978 66.533500e+0]
20/2.608e+0440 9.981e+02 4.511e+03 2.100e+01 26.135 65.33500e+0]
20|2.608e+0450 8.145e+02 2.889e+03 4.840e+01 32.026 64.08500e+0]
20/2.608e+0460 6.828e+02 1.991e+03 4.590e+01 38.203 63.68500e+0]
22|1.106e+0510 1.484e+04 2.331e+04 3.240e+01 7.457 74.58620e+03
22|1.106e+0520 8.055e+03 1.675e+04 5.530e+01 13.736 68.68520e+013
22/1.106e+0%530 5.494e+03 5.923e+03 1.279e+02 20.141 67.13620e+0]
22|1.106e+0540 4.171e+03 1.742e+04 7.960e+01 26.526 66.334620e+013
22|1.106e+0550 3.404e+03 1.142e+04 1.767e+02 32.503 65.08520e+03
22/1.106e+0%60 2.861e+03 6.491e+03 1.952e+02 38.672 64.43%20e+0]

L= 2 B S DS S DS A S oy S e S e e i e S L

5.4 Experiments Discussion

From Figs[# an15 we note that the speedup is almost Iine&r,a/\fg slope. From
Figs.[6 and[]7 we note that scaling efficiency remains high wher@asing the number
of processorg. For example, fob = 22 bits, our approach efficiency is in a range from
74% (10 processors) to 64% (60 processors). In any caséaeefficis almost always
above 60%, especially for bigger valueshof

Figs.[8 and® show that communication time almost alwaysedeses whep in-
creases. This is motivated by the fact that, in our MPI im@atation, communication
among nodes takes place mostly when workers send theirdoo#dol abstractions to
the master via the shared filesystem. Since in our implertientthis happens only
after an MPI1Barrier (i.e., the parallel computation may proceed onlyewlhall nodes



have reached an MBarrier statement), the communication time also includaising
time for workers which finishes their local computation biefthe other ones. Thus,
if all workers need about the same time to complete the looaiputation, then the
communication time is low. Note that this explains also tlseahtinuity when passing
from 30 to 40 nodes which may be observed in the figures abovact, each worker
has (almost) the same workload in terms of abstract statedan but some abstract
states may need more computation time than others (i.e patation time of function
minCtrAbsAuxin Alg. [2 may have significant variations on different abstrstates).
If such “hard” abstract states are well distributed amongkens, communication time
is low (with higher efficiency), otherwise it is high. Figs2 ind[I3 show such phe-
nomenon on the inverted pendulum quantized with 18 bitsyvthe parallel algorithm
is executed by 30 and 40 workers, respectively. In such figuhez-axis represents
computation time, theg-axis the workers, and hard abstract states are represiented
red. Indeed, in Fig._12 hard abstract states are well diggthamong workers, which
corresponds to a low communication time in iy. 8 (and higkesjip and efficiency in
Figs.[4 andb). On the other hand, in Higl 13 hard abstracsstat mainly distributed
on only a dozen of the 40 workers (thus, about 30% of the wergerforms the most
part of the total workload), which corresponds to a high camitation time in Figl8
(and low speedup and efficiency in Fig$. 4 &hd 6). Note thatitf@ is nearly always
at least 2 orders of magnitude less than communication tinus, hard abstract states
distribution is indeed the cause of the above describedgrhenon.

10 15 ™ = %0 o E) 0 150 m =
f— e seonce)

Fig. 12. Details about pendulum computa- Fig. 13. Details about pendulum computa-
tion time (30 nodes, 18 bits). tion time (40 nodes, 18 bits).

Finally, in order to show feasibility of our approach also DMLHSs requiring a
huge computation time to generate the control abstraatiemun PQKSon the inverted
pendulum withb = 26. We estimate the computation time for control abstractien-g
eration forp = 1 to be 25 days. On the other hand, witk= 60, we are able to compute
the control abstraction generation in only 16 hours.

6 Related Work

Algorithms (and tools) for the automatic synthesis of cohsoftware under different
assumptions (e.g., discrete or continuous time, lineaioarlimear systems, hybrid or



Table 2. Experimental Results for multi-input buck DC-DC converter.

QKS PQKS
bl CPU |p CPU CT 10 Speedup EfficiencyCPU K

18/6.484e+0410 9.024e+03 1.666e+04 1.490e+01 7.185 71.82600e+0]
18/6.484e+0420 4.849e+03 1.095e+04 1.850e+01 13.371 66.88400e+0]
18/6.484e+0430 3.256e+03 3.721e+03 3.410e+01 19.914 66.3835600e+0]
18/6.484e+0440 2.460e+03 9.710e+03 2.260e+01 26.358 65.89500e+0]
18/6.484e+0450 1.968e+03 6.677e+03 4.090e+01 32.945 65.83%00e+0]
18/6.484e+0460 1.650e+03 4.001e+03 4.240e+01 39.287 65.42%500e+0]
20/2.629e+0510 3.673e+04 6.938e+04 5.300e+01 7.159  71.58M00e+0]
20|2.629e+0520 1.962e+04 4.439e+04 7.400e+01 13.401 67.08:D00e+0]
20/2.629e+0530 1.318e+04 1.484e+04 1.480e+02 19.945 66.484000e+0]
20/2.629e+0%40 9.862e+03 3.513e+04 9.000e+01 26.662 66.684000e+0]
20|2.629e+0560 7.976e+03 2.645e+04 1.930e+02 32.966 65.98D00e+0]
20/2.629e+0%60 6.697e+03 1.603e+04 1.840e+02 39.262 65.48000e+0]

discrete systems, etc.) have been widely investigatedeitatft decades. As an exam-
ple, seel[16,17,18,10,19]20/21,22] and citations thetéafvever, no one of such ap-
proaches has a parallel version of any type, our focus heréh©other hand, parallel
algorithms have been widely investigated for formal vesgifion (e.g., see [23,24,25]).

A parallel algorithm for control software synthesis hasrbpeesented iri [26], where
however non-hybrid systems are addressed, control israutdly Monte Carlo simu-
lation and quantization is not taken into account. Moreowete that in literature “par-
allel controller synthesis” often refers to synthesizirgailel controllers (e.g., see [27]
and [28] and citations thereof), while here we parallelize foffline) computation re-
quired to synthesize a standalone controller. Summingoubgtbest of our knowledge,
no previous parallel algorithm for control software syrsiisdrom formal specifications
has been published.

As discussed in Sedi. 1.1, the present paper builds mairdy the toolQKS pre-
sented in[[2,3]. Other works abo@KScomprise the following ones. 1n [29] it is shown
that expressing the input system as a linear predicate oset af continuous as well
as discrete variables (as it is doneQ@KS) is not a limitation on the modeling power.
In [12] it is shown how non-linear systems may be modeled lyygusuitable lineariza-
tion techniques. The paper in [15] addresses model basdidesys of control software
by trading system level non-functional requirements (uglptimal set-up time, rip-
ple) with software non-functional requirements (its faatp i.e. size). The procedure
which generates the actual control software (C code) staftom a finite states au-
tomaton of a control law is described [n [30]. [n[31] it is sfhow to automatically
generate a picture illustrating control software cover&gaally, in [32] it is shown that
the quantized control synthesis problem underly@¥S approach is undecidable. As
a consequencé&)KSis based on a correct but non-complete algorithm. Nan@Ks
output is one of the following: i) 8L, in which case a correct-by-construction control
software is returned; ii) NSoL, in which case no controller exists for the given spec-
ifications; iii) UNK, in which caseQKS was not able to compute a controller (but a
controller may exist).



7 Conclusions and Future Work

In this paper we presented a Map-Reduce style parallel itigor(and its MPI im-
plementation for computer clusterBQKS for automatic synthesis of correct-by-
construction control software for discrete time linear higlsystems, starting from a
formal model of the controlled system, safety and livenesgiirements and number
of bits for analog-to-digital conversion. Such an algaritkignificantly improves per-
formance of an existing standalone approach (implememtebe tool QKS), which
may require weeks or even months of computation when apmiéatge-sized hybrid
systems.

Experimental results on two classical control synthesiblems (the inverted pen-
dulum and the multi-input buck DC/DC converter) show that parallel approach
efficiency is above 60%. As an example, with 60 procesB@&Soutputs the control
software for the 26-bits quantized inverted pendulum inuald® hours, whileQKS
needs about 25 days of computation.

Future work consists in further improving the communicataamong processors
by making the mapping phase aware of “hard” abstract statss $ec{_5l4), as well
as designing a parallel version for other architectures ttmanputer clusters, such as
GPGPU architectures. Finally, future work also includeteeding the presented ap-
proach so as to provide a general parallelization framevarkbstraction procedures
(of a suitable type).
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