
A Multi-hop Advertising Discovery and

Delivering Protocol for Multi Administrative

Domain MANET

Federico Mari, Igor Melatti, Enrico Tronci

DI, University of Roma “La Sapienza”, Via Salaria 113 - 00198 Roma, Italy.

{mari,melatti,tronci}@di.uniroma1.it

Alberto Finzi∗

DSF, University of Napoli “Federico II”,

Complesso Universitario di Monte Sant’Angelo, Via Cinthia - 80126 Napoli, Italy.

finzi@na.infn.it

Abstract

A Mobile Ad-hoc NETwork (MANET) is Multi Administrative Domain

(MAD) if each network node belongs to an independent authority, that

is each node owns its resources and there is no central authority owning

all network nodes. One of the main obstructions in designing Service

Advertising, Discovery and Delivery (SADD) protocol for MAD MANETs

is the fact that, in an attempt to increase their own visibility, network

nodes tend to flood the network with their advertisements. In this paper,

we present a SADD protocol for MAD MANET, based on Bloom filters,

that effectively prevents advertising floods due to such misbehaving nodes.

∗corresponding author

1

Our results with the ns-2 simulator show that our SADD protocol is

effective in counteracting advertising floods, it keeps low the collision rate

as well as the energy consumption while ensuring that each peer receives

all messages broadcasted by other peers.

Kewords: Wireless Network; Mobile Ad-hoc NETwork (MANET); Service Adver-

tising, Discovery and Delivery (SADD).

1 Introduction

A Mobile Ad-hoc NETwork (MANET) is Single Administrative Domain (SAD)

if all its nodes belong to a single authority (administrative domain). For exam-

ple, a Wireless Network (WN) consisting of mobile sensors moving in a given

area and gathering data (e.g. temperature) is a SAD-MANET since all sensors

fall under the same administrative domain. Following [2], a MANET is Multi

Administrative Domain (MAD) if each network node belongs to an independent

authority. In other words, in a MAD-MANET each node owns its resources and

there is no central authority owning all network nodes. For example, a network

consisting of PDAs, laptops, and other WiFi capable devices each belonging

to a different user is a MAD-MANET since each node has a different owner

(its user). Note that, both network mentioned above are Peer-to-Peer (P2P)

networks. However, the first one (mobile sensors) is a SAD-MANET whereas

the second one (PDAs, laptops, etc) is a MAD-MANET. Although the devices

forming a SAD-MANET and a MAD-MANET may physically be the same, the

dynamics of the two networks may be quite different. In fact in a MAD-MANET

each node owns its resources (software as well as hardware). For example, a node

in a MAD-MANET may modify the software running on its hardware or even

modify the hardware if this is at its advantage (selfish behavior).

2

1.1 Motivations

WiFi (IEEE 802.11, e.g. see [31]) MANETs consisting of mobile devices such as

laptops, cell-phones, PDAs are more and more widespread [56]. This opens up

opportunities for many interesting applications. Typical examples are: mobile

commerce (m-commerce), entertainment, content sharing, emergency manage-

ment. Here are a few typical scenarios.

1. Sell: While you are having a nice walk your handheld device periodically

advertises a service you may offer, e.g. piano lessons. Upon discovering that

you offer piano lessons someone (possibly many network hops away from you)

may ask you for more details that your handheld device will promptly deliver

to your potential pupil.

2. Buy: During the very same walk your handheld device discovers that

someone is advertising for math lessons. Your device knows you are interested

in math lessons (since you told it) so it will ask for more details that will be

delivered by the peer device of your potential teacher.

3. P2P: Of course, in much the same way content can be advertised and

exchanged between peers thus supporting entertainment as well as emergency

management applications.

Protocols supporting the above activities are often called Service Advertis-

ing, Discovery and Delivery (SADD) protocols. SADD protocols have been

extensively studied. For example see [28, 51, 36, 33, 26, 15, 22, 25, 37, 35].

However, to the best of our knowledge, all SADD protocols proposed in the

literature target SAD-MANETs.

Unfortunately, SADD protocols designed for SAD-MANETs may not work

for MAD-MANETs. For example, a WiFi MANET consisting of handheld de-

vices each belonging to a different user is indeed a MAD-MANET. If network

nodes behave selfishly they may deviate from the specified protocol if this is

3

at their advantage. Thus, a selfish PDA (user) may refuse to forward packets

(to save energy) or may decrease its backoff time (to increase its bandwidth) or

may increase its advertisement frequency (to increase its own visibility). Hence,

a SADD protocol for MAD-MANETs must deploy suitable countermeasures

to protect the network from node misbehaviors that may eventually kill any

networking activity.

1.2 Node Behavior

In order to design protocols for MAD-MANETs, reasonable hypotheses on node

behaviours are needed. Here are some well known classes of node behaviours.

Malicious nodes are willing to spend their resources just to damage the net-

work. For example, malicious nodes may perpetrate a Denial of Service (DoS)

attack by flooding the network (or part of it) with their messages. Malicious

nodes may do so even if this will use up all of their energy without actually

doing them any real service.

Selfish nodes act in their best interest. For example, rather than spending

its energy flooding the network with messages without getting any reward, a

selfish node may refuse to forward packets (to save energy) or may decrease its

backoff time after a collision (to increase its bandwidth).

Altruistic or obedient nodes (e.g. see [2]) just follow the given protocol. One

may think that altruistic nodes do not exist. However it is just a matter of

fact that most nodes (agents) in a MAD-MANET are indeed altruistic. That

is one can often safely assume that most (although not all) network nodes are

altruistic.

Assuming that all nodes are malicious is a too pessimistic hypothesis. No

protocol for MAD-MANETs can be designed under such an hypothesis. As for

MAD-MANETs the typical approach is to assume that most nodes are selfish

4

or altruistic (e.g. see [11]). In some cases malicious node can be tolerated fol-

lowing the approach in [2, 38]. As for SADD protocols, the main obstruction to

overcome is flooding. In fact, all nodes in the network will be eager to broadcast

their advertisements (otherwise they would not participate in the protocol to

begin with). This may result in flooding which, in turn, leads to a Denial of

Service (DoS) attack. In fact, if too many nodes flood the network with their ad-

vertisements eventually no one will be able to send anything (DoS attack). Note

that flooding is an attractive misbehavior for malicious as well as selfish nodes.

In fact a selfish node may be interested in increasing its advertising frequency

to increase its visibility. On the other hand, a malicious node may increase its

advertising frequency since it is an easy way to flood the network and carry

out a DoS attack. Of course, flooding is not the only possible misbehavior for

nodes in a MAD-MANET. We note, however, that flooding is something that

any node participating in the protocol will desire to do and, last but not least,

can easily do by simply changing a protocol parameter (namely, the advertise-

ment frequency). This is not the case with other attacks. For example, packet

dropping may be desirable for a node, but usually requires some nontrivial work

on the protocol implementation.

Resting on the above considerations, in this paper we assume that all network

nodes follow the given protocol and may deviate from it only by increasing their

advertisement frequency. This models the fact that nodes participating in the

protocol are eager to broadcast their advertisements. Accordingly, our goal is

to devise suitable countermeasures to guarantee that node attempts to increase

their advertisement frequency do not result in an advertisement flood destroying

any networking activity.

5

1.3 Our contribution

We present MAD-SADD, a SADD protocol for MAD-MANETs. From a func-

tional point of view our protocol is similar to the SADD protocols for SAD-

MANETs proposed in the literature (see Sect. 1.1). Our main contribution

here is in the mechanism that allows our protocol to counteract advertisement

flooding. In our setting, each node has an advertisement, a profile and a full

service description. The advertisement and the profile define the services (e.g.

content, resources, consultancy, etc). The full service description (just full de-

scription in the following) gives full information about the advertised service.

Here are examples of full descriptions. If the advertising node is offering a movie

then the full description will be the advertised movie file. If the advertising node

is offering, say, piano lessons, then the full description will be a file with the

maestro address.

Each node periodically broadcasts its advertisement to the network nodes.

All nodes cooperate in spreading the advertisement by forwarding it to their

neighbors (advertising phase). Upon receiving an advertisement, a node uses

its own profile to evaluate its interest in the received advertisement. If the

received advertisement is considered interesting, the interested node starts a

unicast transmission asking the advertising node for the full description (dis-

covery phase). Finally, the advertising node delivers such full description using

again a unicast transmission (delivery phase).

To limit collisions, nodes should avoid forwarding recently forwarded packets.

In a SAD-MANET this is typically done by endowing packets with a sequence

number field (e.g. see [53, 39]). However, in a MAD-MANET sequence numbers

do not work since a misbehaving node may broadcast many times the same

packet (advertisement) using higher and higher sequence numbers. In this way,

packets coming from that node will appear to other nodes as new packets and,

6

accordingly, will be always forwarded. This increases bandwidth usage and

visibility of the misbehaving node, but decreases bandwidth and visibility of all

other nodes.

To counteract such misbehavior, nodes may store in RAM the forwarded

messages. In this way, each node will be able to detect if an incoming message

(from a certain node) is new or recently seen (and processed). However, usually

handheld devices do not have enough RAM to effectively store all recently seen

messages.

We propose a trade-off between not storing messages (which results in an

unacceptably high number of collisions) and storing them all (which results in

an unacceptably high RAM usage).

More specifically, we propose to store advertisement signatures by using a

Bloom filter [17]. A Bloom filter is a data structure that can effectively store

message signatures. For example, using only 1.2 Kbytes of RAM (easily available

on any handheld device) we can store signatures for more than 1000 messages

with a false positive probability (i.e. the probability of considering as old an

advertise that is actually new) of 9.4 × 10−3. The Bloom filter is periodically

cleared, thus only recent advertisements are kept. This allows nodes to propose

old advertisements to newcomers.

Our experimental results with the ns-2 simulator confirm the effectiveness of

our protocol in counteracting advertisement flooding DoS attacks. Namely, our

protocol keeps low the collision rate as well as the energy consumption (safety)

while ensuring that each peer receives all messages broadcasted from the other

peers reachable in one or more hops (liveness).

7

1.4 Comparison with related works

SADD protocols have been widely studied. See for example [28, 51, 36, 33, 15,

45, 22, 34, 35, 37, 14]. However all mentioned papers address the problem of

SADD protocols for SAD-MANETs, that is, they do not account for selfish or

malicious misbehaviors of nodes. On the other hand, by exploiting the obedi-

ent nature of SAD-MANET nodes, the previously mentioned protocols propose

routing (e.g. see [4] for a survey) schemas much more sophisticated than ours.

To the best of our knowledge no previously published paper addresses the

problem of designing a SADD protocol for MAD-MANETs. There are however

protocols for MAD networks (i.e. networks consisting of selfish nodes). An

example is the BAR Gossip [38] protocol which allows an altruistic (i.e. fol-

lowing the protocol) broadcaster to stream data to a pool of possibly selfish or

even malicious clients. Other approaches rely on specific domain policies and

architectures [19].

Flooding of advertisements can be considered as a particular case (an easy

one to carry out) of Denial of Service (DoS) attack. For this reason we will

compare our protocol with those striving to counteract DoS attacks in MANETs.

Denial of Service (DoS) attacks for ad hoc networks have been studied in [1,

48, 32], but in these works advertisement flooding is not addressed.

The SEAD protocol in [29] makes use of elements from a one-way hash chain

to provide authentication for both the sequence number and the metric in each

entry. The SRP protocol in [47] is based on multiple routes and relies exclusively

on the mutual authentication of the end nodes (source and destination). In [45],

a probabilistic routing approach is proposed to drive the on-demand discovery

process and to reduce the control overhead. Note that the above secure protocols

do not solve our problem since they are not able to prevent flooding of legitimate

messages (advertising) from legitimate nodes participating in the protocol. The

8

Ariadne protocol [30] enables to secure the routing discovery phase and ensures

that all forwarded packets follow the secure route. Here, request-flooding attacks

are considered and the proposed solution consists of a rate limit for each node

the route requests it is asked to relay. Even if mitigating the effect of flooding

at the network layer, this solution does not solve our problem. Indeed, following

the approach in [30] the more advertisement messages a node sends, the more

it will get broadcasted at the expense of the nodes sending less advertisements.

As a result, in our framework the Ariadne approach not only is not sufficient to

discourage advertising flood, but encourages it since nodes that are not flooding

may never see their advertisement broadcasted.

MANETs have been highly vulnerable to attacks due to the dynamic nature

of their network infrastructure. A discussion on security attacks and techniques

applicable to MANETs is presented in [5]. A risk aware response mechanism

to systematically cope with routing attacks is proposed in [60]. In [46] the au-

thors present an authentication, authorization and security assessment strategy

in which, once a device enters a MANET, it is immediately taken out if consid-

ered dangerous by the infrastructure. None of the aforementioned approaches

can be applied to our context since the DoS attack we are considering here

(advertisement flood) does not fall in the class of attacks studied in [5, 60, 46].

In [58] the authors introduce and analyze Ad Hoc mobile networks Flooding

Attacks (AHFA). The proposed countermeasures use neighbor suppression to

counteract route request flooding attacks and path cutoff to counteract data

flooding attacks. Note that this problem is different from the one considered

in our paper. In fact, AHFA works at the network layer whereas in our case

flooding stems from message advertisement flooding at the application layer and

it is perfectly compatible with a legal behavior at the network level.

Since in a MANET nodes are usually constrained by limited computation

9

resources, selfish nodes may refuse to cooperate. Consensus in sparse MANETs

is discussed in [3]. In [40], the authors address the noncooperation problem

following game-theoretic approach combining reputation and price-based sys-

tems. Cooperation in the context of Vehicular Ad-Hoc Networks (VANET)–

specializing from MANETs– is studied in [42]. None of these approaches apply

to our context where network flooding is the main misbehavior.

The use of bloom filters in networks is discussed in [8]. The deployment of

bloom filters in MANET was proposed in [52] and [23] but only to store requested

services or to guide service requests respectively, not as a method to counteract

DoS attacks. Furthermore, differently form our approach, in [23] the authors

analyze static nodes organized in a grid, while the service discovery protocol in

[52] relies on a backbone of directories constituting a virtual network. Instead,

in [57], the bloom filter is used as a mechanism for distributed call admission

control in MANET.

2 Our Scenario

The main assumptions underlying our MAD-SADD design are the following.

Misbehavior. The only possible misbehavior for a node participating in the

protocol is network flooding with its own advertisements. As discussed in Sec-

tion 1.2 this is the most relevant problem to consider in our context.

Strong Identity. Each node has a strong identity. This identity is a unique

identifier (ID) for the node. This ID could be a node MAC address or, if

available, an IP obtained as in [16, 24].

Slow moving. We assume that nodes move slowly enough with respect to

messages travel time in the network. In particular, nodes move slowly enough

so that they can be considered standing still during the unicast communications

(discovery and delivery). This guarantees that once an advertisement is found

10

to be interesting and more data are requested the path between the source and

destination nodes found during the broadcast phase remains valid. This hy-

pothesis is quite reasonable in our setting. In fact we are considering MANETs

consisting of handheld devices in a (downtown) metropolitan area such as a

square, a mall, a shopping street, a restaurant, etc. In short, relatively crowded

scenarios where people move slowly or just stand steel.

Fixed Bandwidth. The bandwidth that each node dedicates to our SADD

protocol is fixed. This limits the node resources used by the SADD protocol.

For example, even in a densely populated area a node will not spend all of its

networking resources forwarding advertisements. This is a typical approach in

P2P systems.

3 Some More Misbehaviors

In this paper we focus on advertisements flooding in MANET, of course there

are many other possible misbehaviors in our scenario. Here are some of them.

To begin with, MAD-MANETs protocols have been studied at the infras-

tructure level in order to counteract misbehavior of selfish nodes at the MAC

and network layers. As for the MAC layer, selfish nodes may try to increase

their bandwidth by decreasing their backoff time (or variations thereof). Paper

studying such issues and proposing countermeasures are, for example, [6, 41, 13,

12, 59, 49]. As for the Network layer, a selfish node may decide not to forward

one or more packets, thus saving energy. There are basically two approaches

to encourage nodes to participate in the network operations: micropayments

schemes and reputation mechanisms. In a micropayment schema honest nodes

forwarding packets are remunerated with some suitable form of currency. Mi-

cropayments have been studied in [9, 10, 61, 62, 55]. In a reputation system

schema nodes that refuse to forward packets are punished by denying them ser-

11

vice. Reputation systems are studied, for example, in [21, 20]. It is worth noting

that all works on cooperative (MAD) networks rests on game theory to model

node selfishness. For a more complete discussion on these topics see [11]. Note

that in in our setting each node will have many applications running at the same

time. For example, beside our SADD protocol, a node may run a VoIP protocol

or a file transfer protocol. For this reason the protection mechanisms used at

the network layer level cannot directly be used at the application layer level.

In particular we cannot avoid advertisement flooding working at the network

layer. Finally, malicious nodes may modify or even forge transit traffic [54].

For example, malicious nodes may modify messages when they are forwarding

them. More in general, malicious nodes are willing to spend their own resources

just to damage other nodes.

4 Bloom Filter Background

A Bloom filter (e.g. see [17]) of size m and signature k consists of a bit-vector

B of size m and k suitably (e.g. see [17]) chosen hash functions mapping strings

into B entries.

Two operations are possible on a Bloom filter: query() and insert().

Operation insert(u) stores a k-bit signature of message u in B. Operation

query(u) returns true if the k-bit signature of message u is in B, false oth-

erwise. If query(u) returns true we conclude that message u has been stored

in B. Of course false positives are possible. That is, query(u) may return true

even when message u has never been stored in B. However, by choosing suitable

values for m and k the probability of getting a false positive can be made very

small [17].

More specifically, for a filter of size m and signature k after γ insertions the

probability of getting a false positive is approximately p = (1 − e−
kγ

m)k. For

12

example, if we plan for γ insertions, by taking m = 10γ with k = 5 (our best

choice from [17]) we get p = 9.4 × 10−3. Thus if we want to store say 103

messages with the above value of p we may use a bit-vector of size m = 10γ =

104, that is about 1250 bytes of RAM. As a result, even a small handheld device

can easily recognize 1000 recently forwarded messages.

5 Protocol description

An overview for our protocol is in Sect. 1.3. A detailed presentation follows.

5.1 Communication Environment

As for the link layer, wireless communication links between network nodes are

implemented using the WiFi (IEEE 802.11b) protocol. As for the transport

layer, nodes (processes) communicate using the UDP protocol. As for our pro-

tocol, MAD-SADD, it is an application layer protocol. Note that since MAD-

SADD takes care of routing we do not use the routing protocols provided at

the network layer level. As for the network layer we assume (see assump-

tions 2 and 3 of Sect. 2) that countermeasures are implemented to counteract

network layer selfish misbehaviors.

5.2 Message header

MAD-SADD messages are organized into packets. A packet is organized as a

record consisting of administrative fields (header) and a data field. The adminis-

trative fields are the following: 1. time: packet time stamp; 2. source address:

ID of the node (see assumption 4 of Sect. 2); 3. destination address: ID of

final destination node; 4. packet from address: ID of node from which the

packet has been received; 5. next hop address: ID of node to which the

13

packet will be forwarded; 6. seq number: sequence number; 7. type: packet

type (i.e. short-description, query-unicast, data-info, data-info-ack, data, ack,

no-route).

5.3 Advertising Phase: Broadcast

In our scenario, each node is eager to transmit its own advertisement (see as-

sumption 1 of Sect. 2). In order to meet this requirement, each node period-

ically sends its own advertisement in broadcast to all the reachable neighbors

(see Fig. 1(a)). This happens with a fixed advertisement frequency f , i.e. a

node broadcasts its own advertisement every 1/f seconds.

The advertisement must fit into one packet. For this reason, we also call it

short description (of the service). Moreover short-description is also the type

of a packet containing a short description (i.e. an advertisement). A node

receiving a short description will request (in unicast) the full description of the

advertisement only if it is interested in the advertised service.

As an example, in Fig. 1(a) node a (advertising node) broadcasts its adver-

tising, reaching the two nodes within its transmission range.

5.4 Advertising Phase: Forwarding

When receiving a short-description packet, a node is required to forward it in

broadcast to all the reachable neighbors (see Fig. 1(b)). Because of assump-

tions 1 and 3 of Sect. 2 we can assume that when requested a node will actually

forward a packet, without modifying it. However, if all nodes forward in broad-

cast all the advertising they receive, there would be many collisions, resulting in

poor overall performances. On the other hand, as discussed in Sect. 1.3, in this

phase we cannot use sequence numbers as it is usually done in MANETs. We

address this problem by forwarding only new (i.e. not recently received) short-

14

description packets. In this way, we reduce the number of forward operations for

each node, thus saving energy and decreasing the number of collisions. In order

to decide if a newly arrived short-description packet m was already received

in the past or is new, we proceed as follows. Each node maintains a cache BF

with the signatures of the received short descriptions. The data structure used

to implement BF is a Bloom filter (see Sect. 4). Thus, when node i (interested

node) receives from node j a short-description packet m, node i checks whether

(the signature of) m is already in BF (m is old) or not (m is new). If m is in

BF, then i checks if m was recently forwarded. More specifically, let f be the

advertising frequency. If the difference between the time stamp of m and the

time stamp of the last message from j is less than 1/f , then m is discarded,

otherwise it is forwarded. This means that j cannot send to i message m more

than once within 1/f seconds. Of course j can send to i other messages within

the same period of time. The above approach allows us to avoid advertisement

flooding. Note that, since the Bloom filter stores advertisement signatures, we

may have false positives, i.e. we may decide that a short description is old when

it is indeed new. However, this is very unlikely to happen (see Sect. 4). As an

example, in Fig. 1(b) the advertising is propagated through the network.

Remark: One may be tempted to simplify the above Bloom filter based

schema by just saying that after having forwarded a packet a node has an inhi-

bition time of 1/f seconds where it does not forward any packet. Unfortunately

this approach does not work. In fact, if incoming packets are queued then adver-

tisement flooding results in a buffer overflow attack. If incoming packets are not

buffered then advertisements from a flooding node will have a greater chance

of being forwarded thus making flooding quite interesting (almost needed if a

node wants its advertisement to be actually broadcasted). We also note that the

Ariadne protocol [30] takes into account flooding based DoS attacks (e.g. route

15

request flooding) and proposes mechanisms to counteract such attacks. However

the mechanisms proposed in [30] aim at counteracting DoS attacks stemming

from malicious nodes forging route requests. In our case however flooding takes

place in the broadcast phase (no routing needed) and stems from a perfectly

legal node behavior: sending advertisements. Note also that we may use the

mechanisms proposed in Ariadne [30] to secure the discovery (Sect. 5.5) and

delivery (Sects. 5.6, 5.7) phases of our protocol.

5.5 Discovery Phase

When node i receives a new advertisement message m (i.e. m is not in BF),

it evaluates its interest for advertisement m using its profile. For example,

this can be done by using a data mining algorithm (e.g. cosine similarity [27])

when messages are free format or exploiting the message format (e.g. as in

[28, 51, 36, 33, 15, 22, 35]). Of course any of the above approaches can be

used within MAD-SADD. To carry out our simulations (Sect. 6) here we use

a free format for profiles and advertisements, and cosine similarity to evaluate

advertisements.

If node i deems m to be interesting, it discards any other incoming short-

description packet and behaves as follows.

First of all, node i stores in a k-dimensional vector, say undo-vector, the

entry values of BF for the k indexes computed by BF hash functions on argument

m. Then i inserts the signature of m into BF. Finally, i starts a unicast commu-

nication with the advertiser of m, call it a. Namely, using a unicast transmission

i asks a for the full description M of the advertisement m.

The Bloom filter BF is cleared when the γ-th message is added, where γ

is the maximum number of insertions BF has been designed for. In this way,

BF will contain only recently seen advertisements, thus allowing to forward old

16

advertisements to newly arrived nodes. Routing for the discovery phase will be

discussed in Sect. 5.9. Here, we simply remark that, once the intermediate nodes

between i and a are selected, all such nodes will cooperate in forwarding the

query-unicast packet from i to a (see assumption 3 of Sect. 2). As an example,

in Fig. 1(c) node i sends a query-unicast packet to a.

5.6 Delivery Phase: Communication Setup

When an advertising node a receives a query-unicast packet q from an interested

node i, q is immediately served, if a is not busy, otherwise q is stored in a queue

Q queries.

In order to serve a query-unicast packet coming from a node i, the first

operation to carry out is the setup of the communication between i and a. This

is done in the following way. Node a sends to i a data-info packet, containing

the total length of M and the number of data packets which are needed to

completely transmit M . Then, node i sends to a a data-info-ack message. All

the intermediate nodes in the path between i and a simply forward these packets

(by assumption 3 of Sect. 2, we can assume that the path is still active). Note

that during this phase other queries unicast may be received by a. These queries

are all enqueued in Q queries.

When a receives the data-info-ack packet, a can start sending M . To this

end, M is divided into segments (data packets). Each of these data packets

is then stored in a queue Q segments. Routing for the delivery phase will be

discussed in Sect. 5.9.

5.7 Delivery Phase: Sending the Full Description

Once queue Q segments contains all the needed data packets, each one of them

is sent to the requiring node i. Namely, for each data packet p in Q segments, a

17

sends p to i and waits for the ack for p from i. Once the ack packet is received,

the next packet from Q segments is considered.

When Q segments becomes empty, Q queries is

checked again. If Q queries is not empty, i.e. if there are pending unicast

queries for a, then node a extracts a new unicast query from Q queries and

serves it as explained above. In this way, we force nodes to complete the trans-

mission of full descriptions, before serving new unicast queries.

As for the data-info and data-info-ack packets, all the intermediate nodes in

the path between i and a simply forward the data and ack packets.

As an example, in Fig. 1(d) node a sends to i a data-info packet, which is

acknowledged by i with a data-info-ack packet. Finally, a sends the data packets

to i. Each data packet is properly acknowledged by i.

At this point, the unicast communication is finished and node i can consider

new incoming short-description packets.

From Sect. 2 follows that, as far as we are concerned, no selfish misbehavior

takes place during a unicast communication. Thus, as usual, we can use sequence

numbers to avoid forwarding many times the same data packets.

5.8 Handling Link Failures

Since nodes are mobile, links may fail. For example, a node may leave the net-

work or run out of energy. Note that link failures may cause problems only dur-

ing the unicast transmissions, that is during the discovery and delivery phases.

If a node in the transmission chain is not able to deliver a packet (either

data or ack) to the next hop, it notifies this link failure to the previous hop with

a no-route packet, which will be sent back in the chain to the source. As usual,

a receiving node uses a timeout to detect transmission failures.

Furthermore, upon a failure, node i (i.e. the one that has received the

18

interesting advertisement m) restores the previous status of the Bloom filter BF

by using the values stored in the undo-vector during the discovery phase (see

Sect. 5.5).

i

a

i

a a

i i

a

(a) Advertising: (b) Advertising: (c) Discovery (d) Delivery
broadcast forward

Figure 1: An example of MAD-SADD execution

One may wonder why we need to restore the previous values of BF in case of

communication failure. Suppose that we do not use the undo-vector of Sect.

5.5 and we simply store new advertisements in BF. Then a node may never get

the full description of an advertisement it is interested in. Here is how. Node a

broadcasts its advertisementm. Node i receivesm, stores it in BF and, findingm

interesting, sends a query-unicast to a asking for a full description M of m. The

unicast communication fails so i never gets M from a. After a while (depending

on the advertisement frequency) node a will broadcast advertisement m again.

Now i has m in BF so it will not check its interest for m and will just forward

m. Thus, as long as m stays in BF, node i will never consider m any more, so

missing the full description of an advertisement i is actually interested in. For

this reason, upon a failure, node i must erase m from its BF. This is achieved

by using the undo-vector to restore the previous values of BF entries modified

by storing m in BF.

5.9 Routing Protocol

While routing is not needed during broadcast communication, when unicast

communication takes place we have to address the problem of reaching a speci-

19

fied destination.

Our main contribution concerns the mechanism to thwart node selfish be-

havior, thus avoiding “advertising flooding”. Thus, as for routing, we may use

any of the many routing protocols available (e.g. AODV [7] and DSR [18]).

However, by exploiting the advertising and discovery (unicast) phases of MAD-

SADD we use here a sort of “lightweight” AODV during the delivery (unicast)

phase. In fact, we can piggyback routing information in MAD-SADD packets

thus avoiding the overhead of additional routing messages.

Namely, our protocol extracts routing information during both the broadcast

and the unicast phase. This is done by extracting the information contained

in the headers of short-description and query-unicast packets in order to set up

message routing. An example will clarify the matter.

Dest Next

1 1

0 1

0 0

22

Dest Next

1 1

Dest Next

1 20

Figure 2: Routing: advertising
phase

Dest Next

1 1

2 1

Dest Next

0 0

2 2

Dest Next

1 1

0 1

0 21

Figure 3: Routing: discovery
phase

Consider the situation shown in Fig. 2. Node 0 broadcasts its short-description

packet, which can be received by node 1 only. Upon receiving the packet, node

1 updates its routing table adding a link to node 0. Then, node 1 broadcasts the

same message. Since node 2 is reachable from node 1, node 2 can now receive

the short-description packet and update its routing table as well. Note that

Fig. 2 shows the routing tables after 2 has forwarded the advertisement too.

The routing tables of Fig. 2 are partial and do not contain enough infor-

mation to establish a bidirectional unicast tunnel between 0 and 2. In fact,

whenever node 2 queries node 0 for detailed data, the latter is not able to

20

reroute the requested information towards node 2, since the routing table in 0

does not contain 2 as a possible destination.

This problem can be solved by considering also the information exchanged

during the unicast phase. Namely, each node i receiving a query-unicast packet

p extracts from p the source address s and the previous hop address h. Then, i

adds to its routing table an entry with s as destination and h as next hop. For

example, in Fig. 3 node 0 adds the last entry (destination = 2, next hop = 1)

by extracting this information from the query-unicast packet forwarded by 1.

6 Simulation Results

In order to evaluate MAD-SADD performances we implemented it within the

ns-2 simulator [43, 44]. Of course our goal is not to evaluate performances of

the routing protocols. We just use a known one (AODV) which performance

has been already widely studied [50].

Our goal here is to evaluate effectiveness of our approach in counteracting

DoS attacks consisting of advertisement floods. This entails checking that indeed

flooding does not take place (safety) and that legitimate messages get indeed

transmitted (liveness).

We run the following sets of simulations.

1. Bloom filter performance: This set of simulations (Sect. 6.3) aims at

evaluating Bloom filter effectiveness in our context.

2. Advertisement frequency: This set of simulations (Sect. 6.5) aims at

estimating the best value of MAD-SADD advertisement frequency, that is how

often an advertisement should be broadcasted. This is the most important

MAD-SADD parameter.

21

6.1 IEEE 802.11b on ns-2 simulator

Our goal is to use MAD-SADD with WiFi (IEEE 802.11b) devices. Accordingly,

we analyzed a few WiFi chipset and used their parameters to define ns-2 physical

and MAC layer configurations. In order to allow exchange of data between

nodes, we extended ns-2 classes with suitable methods allowing data exchange

between the application layer and the network layer. In fact, ns-2 primitives

send() and receive() only take as argument the number of bytes to be exchanged

but do not directly support data exchange.

6.2 Simulation Environment

Initially, we load each node with an advertisement and a profile that will be kept

unchanged during all our simulation campaign. Advertisements and profiles

have been chosen so as to have a reasonable overlap between them in order to

trigger the delivery phase.

Nodes are positioned in a square region. Each node initial position is cho-

sen at random with a uniform distribution. In the Bloom filter performance

simulations (Sect. 6.3) nodes do not move, while in advertisement frequency

simulations (Sect. 6.5) nodes may move with constant speed in a waypoint

fashion. We simulate one hour of MAD-SADD execution (simulation horizon)

in each simulation run. Each node initial energy (i.e. at the beginning of each

simulation run) is 3000 J.

The main settings for ns-2 simulation parameters are the following. The

Device Tx/Rx power has been chosen so as to have a transmission range of 60

meters. The Antenna type has been set to OmniAntenna (omnidirectional). The

Radio propagation model has been set to TwoRayGround. The Packet length has

been set to 1 Kbyte. The Full description length has been set to 3 Kbytes, thus

to send an advertisement full description we need 3 packets.

22

For all graphics in this Section the y axis represents percentages of (the total

number of) nodes.

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

TA_W

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

TA_Wo

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EA_W

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EA_Wo

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_W

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_Wo

Figure 4: Bloom filter performances on advertising and energy. The y axis rep-
resents percentages of (the total number of) nodes. The x axis represents: total
advestising percentage, effective advertising percentage, energy left percentage
respectively in the first, second, and third row.

6.3 Bloom Filter Simulations

We compare MAD-SADD protocol performances with those of the MAD-SADD

protocol without the Bloom filter (MAD-SADD-NO-BF). In other words, we

obtain MAD-SADD-NO-BF from MAD-SADD by skipping MAD-SADD tests

checking for recently received advertisement.

Here are the simulation parameters we used in our experiments in this Sec-

tion.

1. Density: We employ 80 nodes, which are located in a 300x300m2-wide

area. Each node position is chosen uniformly at random within the given area.

2. No mobility: Nodes do not move from their initial position. This is a

23

reasonable setting, since node mobility only affect MAD-SADD ability to reach

a node, while here we are only interested in studying Bloom filter performances

within MAD-SADD.

Our results are in Fig. 4 and Fig. 5. Fig. 4 shows 6 graphics, divided

in three rows and two columns. Graphics in the first (leftmost) column show

simulation results obtained with MAD-SADD (i.e. with Bloom filter) while

graphics on the second column (rightmost) show simulation results obtained

with MAD-SADD-NO-BF (i.e. MAD-SADD without Bloom filter).

As for Fig. 4, the y axis represents percentages of nodes, while the x axis

meaning is the following.

1. First row: (Labels TA W and TA Wo) The x axis represents the total

advertising percentage, i.e. the percentage of received short-description packets

with respect to the total number of sent short-description packets. Note that a

node broadcasts its advertisement many times (depending on the advertisement

frequency). On the other hand, the same advertisement message can reach the

same node many times because of multiple paths. Typically the number of sent

short-description packets is much greater than the number of advertisement

messages.

2. Second row: (Labels EA W and EA Wo) The x axis represents the

effective advertising percentage, i.e. the percentage of received advertisement

messages with respect to the sent advertisement messages. Note that here we

are counting advertisement messages and not packets, thus each message is

counted once (the first time it is sent/received).

3. Third row: (Labels EL W and EL Wo) The x axis represents the energy

left percentage, i.e. the percentage of energy remaining in the devices at the end

of the simulation run.

As an example, from the first row of Fig. 4 we can see that without Bloom

24

filter (right column) about 80% of the total advertising is received by about 44%

of the nodes.

Fig. 5 shows the statistics on the type of exchanged packets with Bloom

filter (left side) and without Bloom filter (right side). Namely, we detail how

sent, received or forwarded packets are distributed (in percentage on the total

number of packets) among the possible types of packets, i.e. short-description

(column Adv), data (column Data), query-unicast (column Qry), data-info

(column DInfo), data-info-ack (column DInfAck), and ack (column Ack).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Adv Data Qry DInf DInfAck Ack

Sent

Recv

Fwrd

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Adv Data Qry DInf DInfAck Ack

Sent

Recv

Fwrd

Figure 5: MAD-SADD performances on packets with (left) and without (right)
Bloom filter. The y axis shows percentages of (the total number of) nodes.

6.4 Reading Bloom Filter Simulations

The simulation results in Sect. 6.3 show the following.

1. Total advertising: From the first row of Fig. 4 we see that when the Bloom

filter is used each node receives just a small percentage of the total number

of sent short-description packets (which includes already seen, i.e. undesired,

advertisement messages). In fact, graphics TA W shows that 100% of the

nodes receives at most 5% of the generated advertising. On the other hand, if

the Bloom filter is turned off, most of the nodes receive most of the (undesired)

advertising. For example graphics TA Wo shows that 74% of the nodes receives

at least 71% of the (undesired) advertising, and that 50% of the nodes receives

25

at least 76% of the (undesired) advertising.

2. Effective advertising: From the second row of Fig. 4 we see that the

Bloom filter is accurate enough so that no desired advertisement message is

lost. In fact, graphics EA W and EA Wo are equal. This means that there

is no difference between turning on and off the Bloom filter when considering

only new advertisement messages. Namely, in both cases all the nodes receive

at least 91% of the desired advertising.

3. Energy left: From the third row of Fig. 4 we see that Bloom filter usage

allows MAD-SADD to save energy. In fact, graphics EL W shows that by

enabling the Bloom filter 100% of the nodes have at least 71% of their initial

energy at the end of the simulation. On the other hand, if the Bloom filter is

turned off, only 68% of the nodes achieve the same result.

One may wonder why using Bloom filter leads to energy saving, since Bloom

filter usage has a significant computational cost on each node. The answer

is that such higher computational cost incurred by each node is more than

compensated by a reduction in the number of packets exchanged between nodes.

This translates into a remarkable energy saving. More specifically from Fig. 5,

we can see the following.

1. Acks: When the Bloom filter is not used (right side), nearly all of the sent

packets and about 81% of the received packets are acks. On the other hand,

only 23% of sent packets and 25% of received packets are acks when the Bloom

filter is used (left side).

2. Advertisements: When the Bloom filter is used (left side), most of sent and

received packets have type short-description (i.e. are advertisement messages),

while only 1% of the sent packets (and 15% of the received ones) have type

short-description when the Bloom filter is turned off.

3. Forward: When the Bloom filter is used, nearly all the forwarded packets

26

have type short-description, while 77% of the forwarded packets have type data

when the Bloom filter is turned off.

Shortly, Fig. 5 shows that using a Bloom filter most of the packets are adver-

tisements (short-description) while the percentage of “administrative” packets

(e.g. ack) and data packets is small. On the other hand, turning off the Bloom

filter most of the packets are administrative (namely ack) and data packets.

Note in fact that each time a node receives an “interesting” advertisement

it starts the discovery and delivery phases, that in turn trigger date exchange.

Thus when Bloom filter is turned off the discovery and delivery phases are trig-

gered many times for the very same “interesting” advertisement. This increases

the (undesired) data traffic.

6.5 Advertisement Frequency Simulations

We present simulation results aiming at finding an effective value for MAD-

SADD advertisement frequency in our scenario. Of course if we change the node

density or the node deployment area the results will be different but nevertheless

they can be obtained following the procedure outlined here.

First of all, note that, in order to save as much energy as possible, one may

want to set the advertisement frequency as low as possible. However, since nodes

are moving, in order to reach as many nodes as possible with its advertisement

message, a node should set the advertisement frequency to a large enough value.

Thus an advertisement frequency that is a reasonable tradeoff between energy

saving and node coverage has to be found.

To this end we proceed as follows. Our candidate frequencies are (in Hz):

f1 = 1/30, f2 = 1/60, f3 = 1/120, f4 = 1/180.

For each fi (i = 1, 2, 3, 4) we run three sets of simulations, each set repre-

senting a given scenario in a squared area: low density scenario, i.e. 35 nodes

27

in a 300m2-wide area; medium density scenario, i.e. 60 nodes in a 300m2-wide

area; and high density scenario, i.e. 60 nodes in a 100m2-wide area.

In all these scenarios, the initial position of each node is picked uniformly

at random. However, since here we are interested in MAD-SADD nodes cover-

age, we have to consider moving nodes. To this end, at the beginning of each

simulation run, each node i picks at random a time ti ∈ [0h, 1h], a (waypoint)

position pi (within the given area) and a speed vi ∈ [0.5m/s, 1.5m/s] (that is

the typical speed for a walking person). Then, at time ti from the beginning of

the simulation, node i will begin moving towards pi with speed vi.

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f1

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f2

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f3

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f4

Figure 6: MAD-SADD performances in the low density scenario. The y axis
represents percentages of (the total number of) nodes; in the x axis we have
energy left percentage (EL).

Our results are shown in Fig. 6 and Tab. 1 for the low density scenario; in

Fig. 7 and Tab. 2 for the medium density scenario; in Fig. 8 and

Tab. 3 for the high density scenario.

Fig. 6 contains 4 graphics, which represent the energy left percentage for the

four possible advertising frequencies.

Columns in Table 1 have the following meaning. Column Data Sent (resp.

Data Recvd) shows the number of data packets sent (resp. received) during

the simulations. Column Collisions shows the number of collisions detected.

28

Finally, column Del Perc shows the fraction between the number of all received

packets received and the number of all sent packets.

Data Sent Data Recvd Collisions Del Perc

f1 42 40 37,965 92.89

f2 44 42 14,524 93.99

f3 42 38 6,098 92.44

f4 34 30 4,000 88.52

Table 1: Summary for the low density scenario

The meaning for the graphics of Fig. 7 and Fig. 8 is the same as that for

the graphics of Fig. 6. Analogously, the meaning for the columns of Tab. 2 and

Tab. 3 is the same as that for the columns of Tab. 1.

6.6 Reading Advertisement Frequency Simulations

Using the simulation results of Sect. 6.5 we may suggest an effective value for

the advertisement frequency.

First of all, note that we are interested in maximizing the packet delivery

percentage and the energy left in each node, while minimizing the number of

collisions. These are conflicting requirements, thus a trade-off has to be found.

Data Sent Data Recvd Collisions Del Perc

f1 180 168 1,599,865 80.47

f2 806 767 624,019 70.83

f3 757 706 591,936 58.96

f4 747 688 599,373 59.09

Table 2: Summary for the medium density scenario

With these targets, from Fig. 6 and Tab. 1 we can see that f2 and f3 are to

be preferred for the low density scenario. In fact, f1 leads to a high number of

collisions, while all the nodes have no more than 30% of energy left at the end

of the simulation runs. On the other hand, f4 leads to a low packet delivery

percentage. A similar reasoning may be done for the medium density scenario

(Fig. 7 and Tab. 2), where f2 turns out to be our best choice. Finally, in the

high density scenario (Fig. 8 and Tab. 3), f3 and f4 turn out to be preferable

to the other frequencies.

29

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f1

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f2

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f3

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f4

Figure 7: MAD-SADD performances in the medium density scenario. The y
axis represents percentages of (the total number of) nodes; in the x axis we have
energy left percentage (EL).

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f1

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f2

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f3

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

EL_f4

Figure 8: MAD-SADD performances in the high density scenario. The y axis
represents percentages of (the total number of) nodes; in the x axis we have
energy left percentage (EL).

30

As for Tab. 2, one may be puzzled by the values in columns Data Sent

and Data Received corresponding to row f1. In fact, such values are much

smaller than the other values in the same columns. The reason for this is that

in the medium density scenario the nodes quickly run out of energy when using

advertising frequency f1. This can be seen from Fig. 7 which shows that for

frequency f1 (upper left graph) at the end of the simulation run each node has

no more than 5% of its initial energy left whereas for frequencies f2, f3, f4

nodes have much more energy left. For this reason the number of data packets

exchanged in the f1 scenario is much smaller than those of scenarios f2, f3, f4.

Since f3 is one of the best choices in 2 out of 3 scenarios (and leads to accept-

able value for number of collisions and energy left in the remaining scenario),

we finally choose f3 as the best choice for MAD-SADD.

Data Sent Data Recvd Collisions Del Perc

f1 2,041 1,790 15,982,439 80

f2 2,233 2,120 6,515,836 86.12

f3 2,294 2,171 2,718,257 87.03

f4 2,396 2,249 1,596,387 87.23

Table 3: Summary for the high density scenario

7 Conclusions

We presented a Service Advertising, Discovery and Delivery (SADD) protocol

for Multi Administrative Domain MANETs. The main obstacle to overcome in

designing SADD protocols for MAD MANETs is devising effective mechanisms

to prevent selfish or malicious nodes from flooding the network with their adver-

tisements. We have shown that by using Bloom filters it is possible to effectively

counteract advertising floods. Our results with the ns-2 simulator show that our

protocol keeps low the collision rate as well as the energy consumption (safety)

while ensuring that each peer receives all messages broadcasted by other peers

(liveness). Extending the proposed protocol to MAD-MANETs with malicious

31

nodes able to modify or forge messages appears to be an interesting future work.

References

[1] Aad, I., Hubaux, J.P., Knightly, E., Impact of denial of service attacks on

ad hoc networks, IEEE Transactions on Networking 16(4) (2008), 791–802.

[2] Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.,

Bar fault tolerance for cooperative services, SOSP ’05, (2005), 45–58.

[3] Alekeish, K. and Ezhilchelvan, P., Consensus in Sparse, Mobile Ad Hoc

Networks, IEEE Transactions on Parallel and Distributed Systems, vol.

23, n. 3, (2012), 467–474.

[4] Al-Karaki, J., Kamal, A., Routing techniques in wireless sensor networks:

a survey. IEEE Wireless Communications 11(6), (2004), 6–28.

[5] Al-Mazrouei, M.S. and Narayanaswami, S., Mobile adhoc networks: A sim-

ulation based security evaluation and intrusion prevention, ICITST ’11,

(2011), 308–313.

[6] Altman, E., El-Azouzi, R., Jimenez, T., Slotted aloha as a stochastic game

with partial information. WiOpt’03: Modeling and Optimization in Mobile,

Ad Hoc and Wireless Networks, (2003)

[7] AODV. http://tools.ietf.org/html/rfc3561 (2007)

[8] Broder, A, and Mitzenmacher, M., Network Applications of Bloom Filters:

A Survey, Internet Mathematics, (2002), 636–646.

[9] Buttyán, L., Hubaux, J.P., Enforcing service availability in mobile ad-hoc

wans. MobiHoc ’00, IEEE Press (2000), 87–96.

32

[10] Buttyán, L., Hubaux, J.P., Stimulating cooperation in self-organizing mo-

bile ad hoc networks. Mob. Netw. Appl. 8(5), (2003), 579–592.

[11] Buttyán, L., Hubaux, J.P., Security and Cooperation in Wireless Networks:

Thwarting Malicious and Selfish Behavior in the Age of Ubiquitous Com-

puting, Cambridge University Press, (2007)

[12] Cagalj, M., Thwarting selfish and malicious behavior in wireless networks.

Ph.D. thesis, Lausanne (2006)

[13] CAO, L., Zheng, H., Spectrum allocation in ad hoc networks via local

bargaining. IEEE SECON ’05, (2005), 475–486.

[14] Chen, Z., Shen, H.T., Xu, Q., Zhou, X., Instant advertising in mobile peer-

to-peer networks. ICDE ’09, (2009), 736–747.

[15] Cheng, L., Service advertisement and discovery in mobile ad hoc networks.

CSCW ’02, (2002), 16–20.

[16] Cheshire, S., Aboba, B., Guttman, E., Dynamic configuration of IPv4 link-

local addresses, RFC 3927, (2005) http://www.ietf.org/rfc/rfc3927.txt

[17] Dillinger, P.C., Manolios, P., Bloom filters in probabilistic verification. FM-

CAD, LNCS, vol. 3312, (2004), 367–381.

[18] DSR. http://tools.ietf.org/html/rfc4728 (2007)

[19] Durresi, A., Zhang, P., Durresi, M., Barolli, L., Architecture for mobile

heterogeneous multi domain networks, Mob. Inf. Syst., 6, 1, (2010), 49–63.

[20] Eidenbenz, S., Resta, G., Santi, P., Commit: A sender-centric truthful and

energy-efficient routing protocol for ad hoc networks with selfish nodes,

IPDPS ’05: IEEE Intl. Parallel and Distributed Processing Symposium,

(2005)

33

[21] Figueiredo, D., Garetto, M., Towsley, D., Exploiting mobility in ad-hoc

wireless networks with incentives, Tech. Rep. 04-66, University of Mas-

sachussetts, Computer Science (2004)

[22] Frank, C., Karl, H., Consistency challenges of service discovery in mobile

ad hoc networks. MSWiM ’04, ACM Press, New York, NY, USA (2004),

105–114.

[23] Goering, P., and Heijenk, G., Service discovery using Bloom filters, Twelfth

Annual Conference of the Advanced School for Computing and Imaging,

(2006), 219–227.

[24] Guttman, E., Perkins, C., Kempf, J., Service templates and service:

Schemes, RFC Editor, (1999)

[25] Hanashi, A.M., Awan, I., and Woodward, M., Performance evaluation with

different mobility models for dynamic probabilistic flooding in MANETs.

Mob. Inf. Syst. 5, 1, (2009), 65–80.

[26] Haillot, J., and Guidec, F., A protocol for content-based communication

in disconnected mobile ad hoc networks, Mob. Inf. Syst., 6, 2, (2010),

123–154.

[27] Hand, D., Mannila, H., Smyth, P., Principles of Data Mining, The MIT

Press (2001)

[28] Helal, S., Desai, N., Verma, V., Lee, C., Konark - a service discovery and

delivery protocol for ad-hoc networks, WCNC 2003, vol. 3, (2003), 2107–

2113.

[29] Hu, Y.C., Johnson, D.B., Perrig, A., Sead: Secure efficient distance vector

routing for mobile wireless ad hoc networks, In Ad Hoc Networks Journal,

1(1), (2003), 175–192.

34

[30] Hu, Y.C., Perrig, A., Johnson, D.B., Ariadne: A secure on-demand routing

protocol for ad hoc networks, Wireless Networks, 11(1-2), (2005), 21–38.

[31] IEEE: IEEE standard 802.11. IEEE (1999)

[32] Jin, X., Zhang, Y., Pan, Y., Zhou, Y., Zsbt, A novel algorithm for tracing

dos attackers in manets, EURASIP Journal on Wireless Communications

and Networking, vol. 2006, (2006), 1–9.

[33] Khambatti, M., Ryu, K.D., Dasgupta, P., Push-pull gossiping for infor-

mation sharing in peer-to-peer communities, PDPTA-03, CSREA Press

(2003), 1393–1399.

[34] Kim, YS., Shim, YS., Lee1, KH., A cluster-based web service discovery in

MANET environments, Mob. Inf. Syst., 7, 4, (2011), 299–315.

[35] Klimin, N., Enkelmann, W., Karl, H., Wolisz, A., A hybrid approach for

location-based service discovery in vehicular ad hoc networks, WIT ’04:

Workshop on Intelligent Transportation, (2004)

[36] Kozat, U.C., Tassiulas, L., Network layer support for service discovery in

mobile ad hoc networks, INFOCOM-03, vol. 3, (2003), 1965–1975.

[37] Kulla, E., Hiyama, M., Ikeda, M., Barolli, L., Kolici, V., and Miho, R.,

MANET performance for source and destination moving scenarios consid-

ering OLSR and AODV protocols, Mob. Inf. Syst., 6, 4, (2010), 325–339.

[38] Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin,

M., Bar gossip, OSDI ’06: USENIX Operating Systems Design and Imple-

mentation, USENIX Association (2006), 191–204.

[39] Liu, A., Yu, H., Li, L., An energy-efficiency and collision-free mac protocol

for wireless sensor networks, Proc. of Vehicular Technology Conference

2005, vol. 2, IEEE (2005), 1317–1322.

35

[40] Li, Z., and Shen, H., Game-Theoretic Analysis of Cooperation Incentive

Strategies in Mobile Ad Hoc Networks, IEEE Transactions on Mobile

Computing, vol. 11, n. 8, (2012), 1287–1303.

[41] MacKenzie, A., Wicker, S.B., Stability of multipacket slotted aloha with

selfish users and perfect information, INFOCOM-03, vol. 3, (2003), 1583–

1590.

[42] Mousannif, H., Khalil, I., Olariu, S., Cooperation as a service in VANET:

Implementation and simulation results, Mob. Inf. Syst., 8, 2, (2012), 153–

172.

[43] Fall, K., and Varadhan, K., ns notes and documentation:

http://www.monarch.cs.rice.edu/ftp/monarch/wireless-sim/nsDoc.pdf

(2007)

[44] ns-2. http://www.isi.edu/nsnam/ns/ (2007)

[45] Palmieri, F., Castiglione, A., Condensation-Based Routing in Mobile Ad-

Hoc Networks, Mob. Inf. Syst., 8, 3, (2012), 199–211.

[46] Palmieri, F., Fiore, U., Castiglione, A., Automatic security assessment for

next generation wireless mobile networks, Mob. Inf. Syst., 7, 3, (2011),

217–239.

[47] Papadimitratos, P., Haas, Z.J., Secure data transmission in mobile ad hoc

networks, WiSe ’03: Proceedings of the 2nd ACM workshop on Wireless

security, ACM (2003), 41–50.

[48] Parvin, S., Hussain, FK., Ali, S., A methodology to counter DoS attacks

in mobile IP communication, Mob. Inf. Syst., 8, 2, (2012), 127–152.

[49] Peng, C., Zheng, H., Zhao, B., Utilization and fairness in spectrum assign-

ment for opportunistic spectrum access, MONET 11(4), (2006), 555–576.

36

[50] Perkins, C.E., Royer, E.M., Ad hoc on-demand distance vector routing. 2nd

IEEE Workshop on Mobile Computing Systems and Applications, (1999),

90–100.

[51] Ratsimor, O., Chakraborty, D., Joshi, A., Finin, T., Allia: alliance-based

service discovery for ad-hoc environments, WMC ’02, ACM Press (2002),

1–9.

[52] Sailhan, F., Issarny, V., Scalable service discovery for manet, PERCOM

’05: Proceedings of the Third IEEE International Conference on Pervasive

Computing and Communications, IEEE Computer Society (2005), 235–244.

[53] Thomas, G., Capacity of the wireless packet collision channel without feed-

back. IEEE Transactions on Information Theory 46(3), (2000), 1141–1144.

[54] Venugopal, D, and Hu, G., Efficient signature based malware detection on

mobile devices. Mob. Inf. Syst., 4, 1, (2008), 33–49.

[55] Wang, W., Li, X.Y., Eidenbenz, S., Wang, Y., Ours: optimal unicast rout-

ing systems in non-cooperative wireless networks, MobiCom ’06, ACM

Press (2006), 402–413.

[56] Woelk, D., Haskell, B., Carter, J.L., Brice, R., Rusin, Helal, A.A., Any

Time, Anywhere Computing: Mobile Computing Concepts and Technology,

Kluwer Academic Publishers, Norwell, MA, USA (1999)

[57] Yi, D., A Novel Call Admission Control Routing Mechanism Using Bloom

Filter in MANET, NSWCTC 2009, 2009, 675–678.

[58] Yi, P., Dai, Z., Zhong, Y., Zhang, S., Resisting flooding attacks in ad

hoc networks, ITCC ’05: Proceedings of the International Conference on

Information Technology: Coding and Computing, vol. 2, IEEE Computer

Society, (2005), 657–662.

37

[59] Zander, J., Jamming games in slotted aloha packet radio networks, Proc.

of Military Communications Conference ’90, (1990), 830–834.

[60] Zhao, Z., Hu, H., Ahn, GJ, Wu, R., Risk-Aware Mitigation for MANET

Routing Attacks, IEEE Transactions on Dependable and Secure Comput-

ing, vol. 9, n. 2, (2012), 250–260.

[61] Zhong, S., Chen, J., Yang, Y.R., Sprite: A simple, cheat-proof, credit-

based system for mobile ad-hoc networks, INFOCOM-03, vol. 3, (2003),

1987–1997

[62] Zhong, S., Li, L.E., Liu, Y.G., Yang, Y.R., On designing incentive-

compatible routing and forwarding protocols in wireless ad-hoc networks:

an integrated approach using game theoretical and cryptographic tech-

niques, MobiCom ’05, ACM Press (2005), 117–131.

Author biographies

Enrico Tronci is currently an Associate Professor with the Computer Sci-

ence (CS) Department of Sapienza University of Rome (Italy). Previously he

was: a researcher with the CS Department of the University of L’aquila (Italy),

a Post-Doct at LIP (Laboratoire pour l’Informatique du Parallelisme) at the

ENS (Ecole Normal Superior) of Lyon (France). He received his Ph.D degree

from Carnegie Mellon University, Pittsburgh, USA and his Master degree in

Electrical Engineering from Sapienza University of Rome. His current research

interests comprise: Model checking algorithms for automatic verification and

synthesis of reactive systems. He has served as conference chair, program com-

mittee member, reviewer in many International Journals and Conferences. He

has authored more than 50 scientific papers on International Journals and Con-

ferences. He has been recently involved in more than a dozen research projects

38

sponsored by the European Community, European Space Agency, as well as

private companies.

Alberto Finzi is Assistant Professor at DSF, Università degli Studi di Napoli

“Federico II” (Italy). He received his Ph.D degree in Computer Engineering

from Sapienza Università di Roma (Italy). His research interests include: V

& V methods for autonomous systems, multi-agent systems, autonomous and

adaptive systems, planning and scheduling systems. He has been recently in-

volved with several research projects sponsored by the EC (European Commu-

nity), NASA (National Aeronautics and Space Administration), ESA (European

Space Agency), ASI (Italian Space Agency), FWF (Austrian Science Fund),

MIUR (Italian Ministry for University and Research), and private industries.

Igor Melatti is currently Researcher at at the Computer Science Department

of the Sapienza University of Rome. He obtained his Ph.D. in Computer Science

and Applications from the University of L’Aquila in 2001, after having graduated

in the same institution in 2005. He held Post-Doc positions at the School

of Computing of the University of Utah (2005) and at the Computer Science

Department of the Sapienza University of Rome (2006-2010). His main research

interests comprise: Formal methods, Automatic synthesis of reactive programs

from formal specifications, Hybrid systems, Automatic verification algorithms,

Model checking, Software Verification.

Federico Meli holds a Post-Doc position at the Computer Science Depart-

ment of Sapienza University of Rome (Italy). In 2009, under the supervision

of Prof. Enrico Tronci, he received his Ph.D degree from Sapienza University

of Rome. His current research interests comprise: formal methods, automatic

verification algorithms, model checking, hybrid systems verification, automatic

39

synthesis of control software from formal specifications, automatic verification

of Nash Equilibria in multi administrative distributed systems.

40

